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PREFACE 

The theory developed here, although deriving its motivation and parts of its 
terminology from programming theory, can be viewed as a theory for reasoning 
about action in general; hence the term dynamic logic. (Hare], 1979) 

Syntactically, modal logic in general, and dynamic logic in particular, lacks the 
“static” notion of possible world, or execution state, which is the essence of its 
semantics. We introduce the states in the syntax, together with a universe-action, 
connecting each pair of states. and adopt appropriate axioms; we add the adjective 
“combinatory” for such a revision of the modal logic. 

The present paper is aimed at justifying our thesis: The combinatory dynamic/ 
modal logic presents the natural state of affairs. 

Chapter 0: Prologue 

The present paper, though self-contained, is not designed as an introduc- 
tion to classical dynamic logic, and even less to modal logic; it is a message 
to readers initiated in the art. 

In this chapter we shall briefly outline the history and nature of dynamic 
modal logic, the directions and motives for its development, some unsolved 
and other currently unsolvable problems and an approach solving them. 

1. A Short History of PDL 

Propositional dynamic logic, PDL, in its currently most popular version 
was introduced by Fischer and Ladner (1979). They first defined PDL in 
1977, as a propositional fragment of Pratt’s (1976) Dynamic Logic. Pratt, 
on his part, invented DL in 1975, following R. Moore’s suggestion to 
extend the Kripke modal approach to the before-after behaviour of com- 
puter programs. Moore’s fruitful idea, on the other hand, appears to be a 
rediscovery (though cosmetically modified) of Salwicki’s (1970) Algo- 
rithmic Logic. Salwicki’s notion actually emerged in 1968, again in the 
USA, at Stanford (cf. (Salwicki, 1987)). Its author, taking no benefit from 
a possible worlds background, was stimulated by a paper of Engeler. 
Besides Engeler’s, papers of Floyd, Hoare, and Naur influenced a number 
of related studies later on. A relevant pioneering work (cf. (Rasiowa, 1983)) 
is the forgotten book of Thiele (1966). The roots of the issue may also be 
traced back to the historical works of Turing and von Neumann. And even 
earlier: among the first known to investigate what is today known as 
modality were Democritus and Aristotle, 25 centuries ago. 
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2. A Short Description of PDL 

Dynamic logics are formal systems intended for reasoning about actions 
in general. More precisely, they focus on action from a before-after (or, as 
process variants do, from a before-during-after) point of view, action and 
program being considered as synonyms in this context. Syntactically, in 
PDL, we have some atomic properties (to be evaluated as true or not of 
the states of some presumed universe) and some atomic programs 
(intended to supply some primary connections between these states). 
Starting from the atomic ones, formulae and programs of the PDL 
language are composed inductively, loosely speaking, via Boolean, modal, 
and regular rules. 

For the semantics of PDL (and this is the gist of Moore’s idea) Kripke 
models are chosen, associating to each program a separate modality. 
The universe having been fixed, the atomic formulae and programs are 
given arbitrary interpretation which is extended over the composed ones 
respecting the construction rules. 

The deductive part of this formal system originates from Segerberg 
(1977). The soundness of Segerberg’s system is obvious, while its complete- 
ness is not. Raised in 1977 by Segerberg, Gabbay, and Parikh, the question 
of completeness was of special interest until the brilliant proof of Kozen 
and Parikh (1981) appeared. 

3. Directions of PDL Studies and Motivation 

Since the axiomatics of Segerberg is recursively enumerable (r.e.), and 
the completeness obtained is in fact finite completeness (hence the non- 
theorems form an r.e. set as well), we have it that PDL is decidable. Its 
decision complexity is well known (viz. complete in deterministic exponen- 
tial time), and this, together with the consequence problem, compactness, 
and interpolation-in rough outlines*xhausts the proper studies on the 
original version of PDL itself. 

Mutations (extensions and variations) of PDL form another- 
apparently inexhaustible-branch of these investigations, with the main 
questions again being axiomatization/completeness and decidability/ 
complexity, and, of course, comparison (as to expressiveness, descriptive 
power etc.) between these systems. 

Consequently, several branches of autonomous studies were inspired: 
process logics and p-calculus over PDL, dynamic algebras and temporal 
logics, probabilistic programs and logic of effective definitions, the non- 
standard approach of the Budapest group (see (Andreka et al. 1982)), the 
booming area of knowledge representation (see (Halpern, 1986)). The 
algorithmic prototype of DL, promoted by the Warsaw school, has 
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been developing constantly since 1968 and is currently crowned with 
(Mirkowska and Salwicki, 1987). 

The current state of the art has regularly been reviewed and reappraised: 
Parikh (1981), Goldblatt (1982), Parikh (1983), Hare1 (1984), Habasinski 
(1985), Goldblatt (1987), and Kozen and Tiuryn (1987) testify to steady 
progress, without collapses or revolutions. 

Even a brief glance at the literature leaves the impression of a wave of 
intensive DL studies in the last two decades. What were the reasons? One 
folklore belief charges DLs with useful applications to computer practice. 
(We ourselves, not having touched such an application with our hands, do 
not plead such a cause.) Other views have it that the area provides a 
general mathematical theory about action, and a new insigth into the 
nature of computation. These views (of Hare1 (1984)) sound acceptable, the 
more so with (his) amendment to the latter, as to the probable, indirect, 
and long-term nature of any application. 

Formally speaking, Dynamic Logic is par excellence logic, in particular, 
modal logic, and more precisely a poly-modal logic of mathematically 
organized modalities. So, Dynamic Logic is a natural superstructure of a 
natural generalization of a classical philosophical theory-the theory of 
modality. And this is a really good reason to chop logic of this sort. 

4. PDL-Hereditary Defective 

In formal systems, such as PDL, erected on the three pillars of abstract- 
ness: syntax, semantics, and axiomatics, the first and foremost question 
is that of completeness (soundness included). This question will be the 
leitmotiv in our paper too, and a mathematical background to our 
philosophy, which-being conceived and born in the bosom of tri-modal 
logic-will be explained on modal grounds too. 

Having three modalities, (R), (S), and (T), it is well known what 
axiom to take guaranteeing that T= R u S, i.e., that the interpretation of 
the third is the union of the interpretations of the first two. This is the 
union-axiom scheme (T) A c1 (R)A v (S) A, for an arbitrary formula 
A, which “guarantees” the union in some very strong sense: it axiomatizes 
the union and, moreover, only the union, and on the other hand it modally 
defines the union. To recall the definitions, a set of formulae r modally 
defines some semantical class b, if for each Kripke frame 9, FE d 
iff 9 k C and r axiomatizes b, if for each formula A, d + A 
iff f t A. The dynamic notation for the union-scheme is (~1 u j?)A ++ 
<a)A v <B)A. 

The intersection, in an irritating contrast with the union, does not have 
such good behaviour. A theorem of Goldblatt and Thomason (1975, 
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Theorem 8 )--and more precisely its folklore, cf. Gargov (19841986), poly- 
modal form-says that the intersection n is not modally definable, i.e., 
there is no set r of modal formulae such that for each Kripke frame 
%==W,R,S,T),%~riiffRnS=T. 

Concerning axiomatizability of n, there is a more positive result (we 
know such from Vakarelov and Tinchev, cf. (Vakarelov 1985-1988)) 
stating the completeness of the class of “intersectioned” models (i.e., those 
with R n S= T) with respect to the tri-modal logic, extended with the 
scheme ( T ) A -+ (R ) A A (S) A. However, this logic turns out to be also 
complete with respect to another, larger semantical class in which 
Tc R n S. Thus, having a class which properly extends the class of “inter- 
sectioned” models, and which validates exactly the same modal formulae, 
there is no hope to modally axiomatize exactly the intersection. 

These arguments also apply to PDL, where the intersection (an &-of 
the programs a, /I) is of special interest, since it formalizes to a certain 
extent what is known as parallelism, or concurrency. Several recent studies 
(viz. Hare1 (1983, 1984), Parikh (1983) Danecki (1985) Peleg (1987)) take 
a special concern over the intersection, but-as could be expected in the 
light of the above arguments-neither proposes a syntactical characteriza- 
tion of intersection within the original frame of PDL. 

Next at issue, after union and intersection, naturally comes the com- 
plementation of a modality, respectively of a program, in the spirit of 
Pratt’s (1979) query for axiomatization and studying of “complemented 
dynamic algebras.” Such a study would be, however, discouraged by a 
result of Hare1 (1984, Theorem 2.34) stating the undecidability of com- 
plemented PDL. Taking some goals here from our knowledge on inter- 
section and union, namely that the union is an “easy” operation, and the 
intersection-“difficult,” and in virtue of de Morgan’s law c1 n fi = 
~(1 a u 1 /I), we expect the complement to be at least as difficult as the 
intersection is. Indeed, as shown by Gargov (Gargov 1984-1986) if we 
take-over bi-modal logic-the familiar S5 axioms for the union of the two 
modalities, we shall simultaneously axiomatize at least three different, and 
progressively included, classes of bi-modal frames ( W, R, S): 

(1) the class where R u S is an equivalence relation, 
(2) the class in which R u S = W2, and 

(3) the “interesting” complementary class, namely, where R = 1 S. 

Moreover, Humberstone (1983) proposes an alternative axiomatics for (3) 
and an intermediate stage of his proof suggests that this class and 

(4) the class of frames, where R u S is an equivalence relation and 
RnS=@, 
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validate the same modal formulae. So, as shown by the arguments of 
Humberstone and Gargov, the axiomatization of the complementary class 
over the b&modal language is a hopeless case: this modal class is axiomati- 
cally inseparable from the other three mentioned above. 

Particularly, for modal definability, we can quote an elegant construc- 
tion of Humberstone (1983) which makes no explicit reference to the heavy 
artillery of Goldblatt and Thomason’s theorem, and shows the complemen- 
tary class as modally undefinable, over the usual bi-modal language. 

Following this line, after u, n , 1, we shall surely arrive at inclusion 
s and equality = of modalities, respectively of programs. (We say that 
x k R E S if Vy(xRy + xSy).) In the b&modal case, we have again a result 
of Tinchev and Vakarelov (Vakarelov, 1985-1988) showing the complete- 
ness of the system containing the axiom scheme (RsS)+ 
( (R ) A + (S) A ) and a rule, which can be loosely formulated as “From 
(R)p-+ (S)p infer RcS.” 

The theoretical mainstream which naturally covers the above operations 
( u , n , 1) and predicates ( c , $, = , # ) as special cases, drives at a 
syntactical description of first-order definable operations, manageable in 
dynamic modal logic. Another branch within the same stream would even- 
tually aim to fill an old gap in modal logic, between quantilicational and 
propositional studies. This question is not only technical, but rather 
methodological: how to introduce the letter of the quantifier while keeping 
the initial spirit of the modality? No commonly accepted answer to that 
question has been proposed yet. 

Further on, the next theorist’s dream will be to increase the order, 
arriving at second-order definable operations, which seem to be quite 
natural here, in the context of the historical relations between modal/ 
dynamic logic and second-order logic. At this stage we enter another 
branch of PDL studies, namely those of “recursive,” or “repetitive,” or “p-” 
character. A representative puzzle in that area-modal description of 
second-order definable operations-is Streett’s (1982) conjecture, still 
unproved in its original setting, for axiomatization of the “repeating” 
predicate (which is true of a state x of ( W, R), if an infinite R-path exists 
in x). Thus, we gradually arrived at the limits of a natural problem, even 
the most natural special cases of which manifest themselves as hard nuts to 
crack. 

5. Removing the Defect: Formal Speculations 

Let us examine more carefully the intersection-modality [R n S]. The 
semantical condition is x k [R n S] p iff Vy(xRy & xSy -+ y k p). Having 
the conjuncts xRy and xSy in the antecedent, the quantifier Vy does not 
distribute over them, and thus the semantical condition for [R n S] is not 
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reducible to the conditions for [R] and [S]. So, in search for modal 
description of the intersection, one possible solution would be to reverse 
Kripke’s semantical condition, defining a new modality [RI, or q l, with 
x l= [RI p iff Vy(y k p + xRy). Philosophically, the “box” 0 represents 
necessity, to exactly the same extent to which the “window” operator •ll fits 
the metamathematics of sufficiency. We would now obtain for the intersec- 
tion R n S a condition with conjuncts in consequent, which the quantifier 
distributes over 

xl= irRnWl~ iff Vy(y 1 p + xRy & xSy) 

iff VY(Y t= P-+xRY)&~Y(Y I= P-+x~Y) 

iff x k iIN P A [YSl P, 

whence the formula [R n S] p ~1 [RI p A [SJ p, which turns out to repre- 
sent the intersection pretty well, at least as well as the union-axiom 
represents the union; see (Gargov et al., 1987). Of course, for union’s sake 
the original modality [R] has to be kept in the vocabulary as well. Not 
only union and intersection become equipollent under such scope, but a 
successful treatment of the complementation of modalities is already 
possible, as a side effect: 

[l R]Att[Rj 1 A and [l RljA ~1 [R] 1 A. 

The traces of such an approach-associating with each relation R two 
modalities [R] and [RI-lead back to van Benthem (1979) Humberstone 
(1983), and Tehlikeli (1985), and hints in that sense are given by Vakarelov 
and by Goldblatt as early as 1974. The idea was later launched and largely 
discussed in (Gargov et al., 1987), (Humberstone, 1987a), (Goranko, 1987, 
1989), and (Gargov and Passy, 1989). 

We saw above the “alternative” modality •l growing out of the intention 
to reduce the modality-intersection to modalities of the intersects. Let us 
try the other way round, to restore the intersection [R n S], provided [R] 
and [S] were given: 

xk (R)PA <S>P iff 3y(xRy&y~p)&3z(xSz&z~p) 

iff 3y3z(xRy&xSz&yt=p&z+p). 

If we had modal means guaranteeing the identity of states, viz. y= z, we 
would have been able to ensure x /= (R n S ) p. Alas, “we have no means 
of explicitly describing the possible worlds” (Fagin and Vardi, 1985). But 
we may coin such means exploiting more of y l= p & z + p. Restricting 
some of the propositional variables p (say, only the even-indexed in the 
alphabet @ = {pl, pz, . . . }) to be interpreted as true at exactly one state 

643!931?-4 
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(i.e., as proper names for these states), we already have y l= p2 & z k pz 
imply y = z. 

For clarity’s sake, we pick a new alphabet C = {ci, c2, . ..} (instead of 
(pZk/k <o}) and require that the C~‘S be interpreted as proper names for 
the states of the universe, i.e., that 

(i) each name nominate exactly one state 

(ii) each state have at least one name. 

The goal has been reached. The scheme (R n S ) c ++ (R ) c A (S ) c, for 
CEC, both modally defines (which is clear by inspection) and axiomatizes 
(which will be proven in the next chapter) the intersection of modalities. 
Similarly, one can treat the negation 1 R, via (1 R)c ~1 [R] 1 c. Of 
course, a proper axiomatic pad for the conditions (i) and (ii) is presumed 
beforehand, to which end we first of all add an extra S5 modality [v] and 
interpret v as the Cartesian square of the universe. We call the modal 
systems thus equipped (with names and universe-modality) combinatory 
systems, from where the abbreviation CPDL comes. CPDL solves the 
problems. 

Thus we state as a main defect of Kripke modal systems the existence of 
explicit individual worlds s, t, . . . in the semantics vs. representatives of 
collections of worlds p, q, . . . on the syntactical side where therefore the 
world’s individuality is lost. Christening the worlds, the combinatory 
approach does remove this defect and its unpleasant consequences. A con- 
sequence of the sort, called in (Fagin and Vardi, 1985) “flabbiness” of 
Kripke models, is the existence of semantically (modally) equivalent 
Kripke models which are not isomorphic. No flabby combinatory models 
are available, rejected by a version of Scott’s L,,,-isomorphism theorem, 
Section 1.2. 

Fagin and Vardi’s paper presents a good collection of critical remarks on 
the state of affairs stated after Kripke, and the authors suggest weakening 
the semantics until it fits the syntax, as opposed to the policy we outlined 
above-enriching the syntax to fit the semantics. Another defender of the 
alternative policy is Peleg (1987), who proposes a Montague type seman- 
tics for dynamic logic, focusing the semantics on collections of states, rather 
than on individuals. By happenstance, Peleg seems to have also been 
provoked by the famous intersection of programs. 

6. Yet in the Philosophy: The Quasi-Henkin Completeness Proof 

The completeness proof for PDL is a hereditary acquisition from modal 
logic, and the modal completeness proof, in its most popular versions, is an 
imitation of Henkin’s completeness proof for the predicate calculus. This 
last proof is essentially based on the notion of (maximal) consistent set of 
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formulae, or the synonym-(maximal) theory. The so called Henkin com- 
pleteness proof flourishes on most of the popular modal systems. To 
describe it, Humberstone (1983)-axiomatizing what we called the Cl-m 
system-writes: “The argument we use is modeled after Cresswell’s adapta- 
tion to modal logic of the method Henkin used to prove completeness of 
first-order logic, rather than the more widely known adaptation of that 
method due to Scott and Makinson... In the former case maximal theories 
are correlated with elements of the falsifying model but the correlation is 
not required to be one-one, so that there is more freedom in constructing 
the required accessibility relation than on the latter approach-as generally 
implemented-in which the maximal theories are identified with the points 
of the model serving to falsify any given nontheorem.” 

These two modal adaptations of the Henkin proof share the same devia- 
tion from their prototype. This last, cf. (Shoenlield, 1967), zooms the nega- 
tion of the disprovable formula up to one maximal theory. The points 
of the counter-model are then defined, modulo this fixed theory, as 
equivalence classes of constant (variable-free) terms, with no reference to 
another maximal theory. In contrast, the modal proofs appeal to much 
more than one, sometimes to all maximal theories, which themselves have 
to serve for points of the counter-model: the modal syntax, as it stands, 
proves too poor to offer a counterpart of constant terms, which are the 
pillars of the Henkin model’s worlds. (Of course, a default understanding 
nominates a theory as the infinite conjunction of all its elements, but such 
unfinitary conjunctions are not in the syntactical arsenal.) 

Thus, the main deviation of the modal completeness proof from Henkin’s 
comes to overcome the misfit between the incapability of the modal syntax 
and the capacity of its Kripke semantics. The same concern has been con- 
siderably aggravated as soon as the mutations of PDL are considered, and 
the proof requires non-trivial intellectual efforts in some of these cases (e.g., 
for Deterministic PDL, see (Ben-Ari et al., 1982)). So the syntactico- 
semantical misfit makes the completeness proof not automatically 
applicable to mutations of modal logic, which appears to be a handicap 
not of the proof but of the logic. 

The enriched D-m modal language more or less solves the syntactical 
troubles caused by the intersection and complement. (The completeness 
proof for U-m, modulo some extra complications, resembles that for S5.) 
However, this attempt proves not satisfactory enough to compensate for 
the “big misfit”: the q -•l models are still flabby. This is not surprising, 
since [R] is a synonym of [ 1 R], and this syntactical means is not devised 
for handling a particular possible world. 

The other solution, to enrich the modal language with proper names for 
the possible worlds, is superior to the former. The names solve the syntacti- 
cal problems around the Boolean operations on modalities/programs, and 
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they do this as a matter of course. The presence of names, moreover, per- 
mits restoration of the original Henkin proof, the names starring as special 
Henkin constants (see Section 1.5). One takes only one maximal theory, 
and the points of the falsifying model come out as equivalence classes of 
names, modulo this theory. Implicitly, each point does correspond to a 
different maximal theory. However, each theory contains at least one 
name-this is guaranteed by the deductive system-and this name is as 
distinctive as a fingerprint for this theory. Thus the name serves in this case 
as the lacking infinitary conjunction in the language. 

This restored Henkin proof has, not surprisingly, an additional advan- 
tage: it works equally smoothly for all of the popular modal/dynamic 
mutations. Moreover, it resists tempting mathematical generalizations: 
completeness theorem for all expressible extensions (Section 11.2.1), com- 
pleteness theorem for all existential (3*-) and universal (V*-) definitional 
extensions of CPDL (Section 11.2.2), and completeness theorem for all 
first-order, i.e., (3, V} *-definitional extensions of the Quantified CPDL 
(Section 111.2). 

Here, forestalling the events, we arrived to quantification, which is 
another mathematical attraction the names provide. We simply let the 
quantifiers range over the names and obtain one more than natural modal 
quantificational theory, developed in Chapter III. 

In modal logic, besides axiomatizability, there are a number of notions 
and questions of interest: decidability, modal equivalence (local and 
global), modal definability (of semantical classes and of classical formulae), 
first- and higher-order definability (of modal formulae), expressibility. 
Most of these questions are multiplied-when considered in states, models, 
and frames, finite or not-and the interrelations between them create a real 
terminological jungle, into which the combinatory approach claims to put 
some clearer order. 

7. The Present Paper 

The present paper presents Combinatory PDL as a fusion of two ideas 
featured in our Ph.D. Theses: names in modal logic (Passy, 1984), and 
w-axiomatics in dynamic logic (Tinchev, 1986). 

The first draft, completed by the end of 1984, was designed as the “full 
paper” promised in our preliminary reports on the matter (Passy and 
Tinchev, 1984, 1985a, b]. We were than planning an opusculum containing 
detailed proofs and stimulating some future investigations on the subject. 
However, due to different circumstances, we prepared the final revision 
required by “Information and Computation” (then still “Information and 
Control”) as late as the fall of 1989. Meanwhile some of these investiga- 
tions appeared: [Gargov, 1986; Gargov and Passy, 1985, 1988; Petkov, 
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1987; Radev, 1985, 1986, 1987; Sotirov, 1984, 1985; Tehlikeli, 1985; 
Tinchev, 19881, and to complete this list of papers we sentimentally love, 
we should add [Gargov et al. 1987, 1989; Goranko, 1987; Tinchev and 
Vakarelov, 19851. We were thus enlightened on the subject and it is 
natural that this enlightenment should be reflected here. That is how the 
present paper, originally planned as an opusculum, grew (along with us) 
into a magnum opus. 

Though the paper can be regarded as a compendium on combinatory 
dynamic logics, much of the material is published here for the first time. 
Such is, in particular, the axiomatization-through-expressiveness idea, 
which became the backbone of the axiomatizability results, and hence of 
the whole paper. 

8. Notes on Terminology and Notation 

We keep independent enumeration of heads (definitions, theorems, 
notes, etc.) in different sections, and quote, as usual, omitting chapter num- 
ber when quoting within the same chapter. The equality mark = also stands 
for graphical identity of two words; c (/“A (cc?A) denotes that the letter c 
occurs (does not occur) in the word A. The composition marks 0 (for rela- 
tions) and ; (for programs) will be omitted as usual, the composition 
ff; . . . . a of k 2 0 times tt will be denoted by ak, where a’, denoted by I, is the 
identity, or diagonal relation on the universe. The power-set of a set M will 
be denoted by g(M); o is the cardinality of the set of natural numbers N, 
M,, is the quotient of the set M modulo the equivalence relation -. For 
a binary relation R, R(s)=,, {t/sRt}. By PC we shall mean the predicate 
calculus, in a version specified in convention 1.1.5 below. 

Fixing the logical lexicon -I, v , 3, ( ), the standard abbreviations will 
be in force: A , + , c-) , 0, 1, V, [ ] = l( )l; 0 and El will stand for 
(v) and [v]. 

Throughout the paper, having fixed some modal system 6, & 1, or I-- &, 
or even t, will stand for provability in d, whereas J$’ and ,Y will be typi- 
cal letters for models of b. The common semantical dictionary will be used: 
for a model & with universe M, state s E M, valuation V and for a modal 
formula A, by J%‘, s k A we denote that s satisfies A, i.e., that s E V(A). We 
say that J%? is a model for A, denoted A + A, if Vs,, ,,,,(JZ, SF A); J? is a 
model for the set of formulae r, denoted Jz’ + r, if VA,,,(.M + A); A is 
satisfiable if !I&, s (A, s + A); A is valid, denoted + A, if V&?(,H k A). 
The models .&? and N are said to be modally equivalent (over the modal 
language Y), denoted JL? # Jlr, if VAA, J./Z k A iff .N k A). And 
we say that Jlr are isomorphic, denoted JY = N if they are copies of the 
same model; the isomorphic models will be always identified, justifying the 
notation J%? = N. 
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The fmp is abbreviation for “finite model property,” and ih for “inductive 
hypothesis.” 

Two more notions, cf. (Shoenlield, 1967): A simple extension of a deduc- 
tive set of formulae is a new, bigger set over the same language, whereas 
a definitional extension assumes extension of the ground language. 

Chapter I: Combinatory PDL 

In this chapter we give a fairly detailed presentation of what we call the 
Combinatory approach to dynamic modal logic; throughout, special atten- 
tion will be payed to CPDL^-a sample extension (with intersection) of 
the basic system CPDL. The results on CPDL (Sections l-6) are easily 
extendable over CPDL ,̂ exclusion being made by the decidability result 
(Section 7). This care of CPDL” serves as a prologue to the next two 
chapters, written more sketchily, where the merits of the approach will be 
made use of, to handle numerous mutations of the basic system. 

1. Language, Semantics, Expressiveness 

Let C, QO, and n, be three countably infinite and pairwise disjoint 
alphabets, known respectively as the set of names (or constants), the 
set of atomic propositions, and the set of atomic programs. The letter 
v # Z u QO u Z7, will be called the universe program (or modality). 

DEFINITION 1.1. The language of CPDL consists of formulae and 
programs, inductively defined by 

(i) The elements of C u @,, are formulae. The elements of ZI, u {v 1 
are programs. 

(ii) If A, B are formulae and a, /I are programs, then: 

1 A, A v B, (~1) A are formulae, and cr; p, c1 u p, LX*, A? are 
programs. 

For CPDL” we add the clause 

“tl n /I is a program.” 

The set of all CPDL formulae is denoted by @, and the set of all 
programs by 17. Typical elements are c, d, e-for C; a, b-for ZZ,; tl, p, 
y-for ZZ; p-for QO; A, B, C-for @p; and r-for p(G). 
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Abbreviations. OA=DF (v)A, q A=,, [VIA, I=,,~ I‘?, ~=~~v;c?, 
@ =DF (s) = (v; c?), q =DF [t] = [v; c?]. 

DEFINITION 1.2. A model for CPDL is a quadruple .& = (M, R, x, V), 
where M is a non-empty set (universe of states or worlds), and the other 
three are functions 

R: l7+B(M*), 1: C”“‘“- M, and V: @ + g(M) 

connected by (where s + A is s E V(A), and sR, t is (s, t) E R(a)) 

V(c) = M4>? for cEC, 

V(lA)=M\V(A), V(A v B) = V(A) u V(B), 

V((cr)A)= {s/3t(sR,t&t j= A)), 

R, = M2, 

R .,s=&u&, 

R,,= R,R, = {(s, t)/%(sR,v & vR,r)}, 

Rae = (RJ* = U/c < w  (Rdk, 

Rx= {(s, s)/s I= A}. 

For CPDL” we add R, n p = R, n R, 

EXERCISES 1.3. l.~Z,s~lIAiffM~,4 

2. A’, s b @ A iff J? t= q A iff ./Z, x(c) b A 

3. A/= @ diffX(c)=X(d) 

4. ~=@AAt,AA. 

Note 1.4. The restrictions of CPDL’s models to PDL’s language (i.e., 
to the language without v and C) yield precisely the countable PDL models. 
The interpretations x(c) and R(v) justify the term “name” for c and 
“universe” for v. The term “constant” for c comes after the semantics of c: 
R(2) = M x {x(c)}, which is a totally defined constant function. These con- 
stants provide an equal alternative for CPDL’s syntax: the set CA = 
{@/cd} f d l’t’ o mo a 1 tes may successfully replace the set C of propositions. 
Skordev (1980) uses similar constant functions in some recursive-theoretic 
context, and we adopted his Combinatory space as godfather of our modal 
system. 

The surjectivity of x imposes one prima facie drastic limitation on the 
models: they are at the most countable. However, as demonstrated in 
Sections 6 and 7 below, this is a restriction only apparently and is therefore 
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an excellent price for the strong separability of the models thus achieved. 
Given a model ,I = (M, R, x, I’), for each state s EM, there is some 
formula, namely any c E x -~ ‘(s), separating s from all other worlds of that 
model: 

Vt,,M(t kcifft=s), i.e., V(ic)= {t/t#s}. 

We call this separability “strong” since it is stronger than the usual one, 

VsVt,#.3A(s t=A &t t= l/i), 

and it is this strong separability that enables easy syntactic treatment of 
world’s identity (see Exercise 1.3(3)), which in its turn will be the essence 
of what follows in this paper. 

The semantics of v agrees quite well with the definitions of satisliability 
and validity in a model, and so the presence of v increases the 
metatheoretical capacities of the basic language. We have 

(a) A is satisfiable iff 0 A has a model; and A has a model iff 0 A 
is satisfiable (so the problems of “having a model” and “satisliability” are 
co-reducible over CPDL). 

(b) In the terminology of (Parikh, 1981; Harel, 1984) the global 
consequence problem, A )= g B if VA (JZ k A only if &! k B), becomes 
reducible to (and hence co-reducible with) the consequence problem, 
+A-+B:At==RBiff k ElA+ElB. 

(c) In particular, one can smoothly treat the partial correctness 
assertion PCA--A (a} B, cf. (Parikh, 198 1 )-without extra semantical 
means: A {LX} B has the semantics of q (A + [a] B). (Conversely, q could 
be contextually defined in PCA’s language as well: IY B =DF 1 { l?} B). 

In the next section we shall pay special attention to the relationship 
between the combinatory models and language. In what remains of this 
section we given some definitions frequently used in the sequel, and 
establish some results on the expressive power of the CPDL language, 
relative to the language of the predicate calculus, PC. 

Notational Conuention 1.5. By PC we denote the predicate calculus with 
equality ( = ), with no function symbols, and with binary and unary 
predicates only. Let F, G be typical letters for PC formulae; we assume PC 
formulae in prenex form Q, e, . . Qkek G, where Qj E {V, 3 }, and G is open 
(quantifier-free). The letters CI and p will range over binary and unary 
predicates, respectively, and c, d, e over the individual variables; the modal 
and first-order use of these letters will be easily distinguishable. We 
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shall sometimes abbreviate Ql e, . . . QkekG(a, . . . . p, . . . . e, , . . . . ek, c, . ..) as 
Qe G(a, P, e, c). 

By PC t-- F we denote that F is a theorem of PC. By ~2 IF F we denote 
that the PC formula F = F(cr, . . . . p, . . . . c, . . . ) holds in the model ~2 = 
(W, R, x, V), i.e., that the assertion made by F for the relations R,, . . . . the 
predicates V(p), . . . and the states x(c), . . . . holds in ~2’. So, in J&Z, we inter- 
pret the PC predicate a as the CPDL program a, p as the CPDL proposi- 
tion p, and the (free) variable c-as the constant x(c). So, the PC model 
JZZ assumes also the valuation x of the variables. As usual, IF F stands for 
VA (~2 IF F). 

Note 1.6. The restrictions we pose on PC are only cosmetical and do 
not spoil the results we shall be referring to: completeness theorem, PC k F 
if? I/--F, and 2’:-completeness for deciding provability in PC. 

DEFINITION 1.7. Let F have k free variables. Let A have k names 
appearing in it. We say that A expresses F, if, for each model JZ, and each 
Cl 9 . . . . ck, A? It- F(cl, . . . . ck) iff JZ k A(c,, . . . . ck). Since A expresses F iff 
q A does, we shall always suppose that the expressive formula begins 
with q 3. 

Note that if A expresses F, then IF F iff t= A. Obviously, the class 
of expressible PC formulae is closed under conjunction, negation, and 
disjunction. 

We shall show in the next chapter that if A expresses F, then A 
axiomatizes the operation (on programs appearing in F) given by the 
k-place predicate 

RF= {MC,), . . . . x(ck))/A IkFtc,, ..-, ck)). 

DEFINITION 1.8. Let - be the translation from open PC formulae into 
CPDL formulae, G H G”, which replaces 

(a) each occurrence of a(c, d) by @(a)d,foreacha# =; 

(b) each occurrence of c = d by @d; 

(c) each of occurrence of p(c) by 0 P. 

EXPRESSIVENESS THEOREM 1.9. For each open PC formula G, G - 
expresses G. 

Proof Straightforward induction on the construction of G, cf. (Tinchev, 
1986). 1 
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EXAMPLES 1.10. Open formulae, though a narrow class, suffice for 
defining some familiar operations on programs, which therefore are 
expressible over CPDL: 

union: a(c, d) v /?(c, d) 

expressed by @ (u.)d v @ (/?)d 

intersection: a(c, d) A p(c, d) 

expressed by @ (cr)d A @ (/?)d 

complementation: -I DI(C, d) 

expressed by 1 @ (a ) d 

converse: CI -‘(c, 4 

expressed by @ (o? ) c. 

Theorem 1.9 gives only what is seen at first glance w.r.t. CPDL/PC 
expressiveness. For, e.g., the composition a; fl(c, d) is also expressible (by 
@ (a)( /3)d), and it might therefore swallow one existential quantifier. 
We shall make use of this fact in the larger dynamic language including 
negation and intersection of programs. 

EXPRESSIVENESS THEOREM 1 .l 1. Each PC formula which has no nested 
quantifiers is expressible in the language of CPDL + ( 1, n >. 

Proo$ Since the expressible PC formulae are closed under conjunction, 
disjunction, and negation, it will be representative enough to express a 
formula of the sort 

G(c,, G, c3, CA = MR,(Cl, c) A l&(CZ, c) * RAG 4 

A lR,(C, cq) A R,(c, c) A l&(C, c) A P(c)), 

which is expressed by 

G-(c,, c2, c3, c,)= ((v; c,?; a1 A v; c,?; la,); (tn R,n lRgn P?); 

(a3; c3 ?; vnia,;c,?;v))l. 1 

Unfortunately, even in the presence of the other familiar algebraic- 
relational operations in the dynamic language this result cannot be spread 
over PC formulae with even two nested existential quantifiers. We have: 

PROPOSITION 1.12. Let R, be R(aj) for j= 1, . . . . 6. Let a be a program 
with interpretation R, given by 

xR, y - 3z 3t(xR, z & zR2 y & xR, y & xR, t 8c tR, y 8z zR, t). 
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Then there is no program fi in the dynamic language of ;, v , n , 1, -‘, c , 
= , ?, *, v, 1, C, a,, . . . . a6 such that R, = R,, in each model. 

Proof. Cf. (Tinchev, 1986). i 

In Chapter III, we shall obtain a result showing that each PC formula is 
expressible in the Quantified CPDL, CDL. It is folklore nowadays that the 
iteration * is not expressible in PC, and so to establish more accomplished 
expressiveness results we should either give up the * on the modal side, or 
add some transitive closure operator on the PC side, cf. [Tiomkin and 
Makowski, 1985), or see earlier references (pointed out by the referee) 
(Aho and Ullman, 1979; Zloof, 1976). We leave these questions on 
expressibility open restricting ourselves to one formulation: 

Problem 1.13. Give an explicit description of the sets: 

(FE PC/Fis expressible in CPDL} 

{FE PC/Fis expressible in CPDL + { n , I, 1, - ‘, s } } 

{A E CPDL/A expresses some PC formula} 

{A&PDL+ {n, 1,1,-l , c }/A expresses some PC formula}. 

2. Language vs. Models: Scott’s Isomorphism Theorem 

As noted by Fagin and Vardi (1985), Kripke models for modal logic are 
“flabby” in the sense that two non-isomorphic Kripke models can be 
modally equivalent. Indeed, from general modal theory, it follows that each 
model is modally equivalent to any of its disjoint degrees (i.e., the disjoint 
union of a number of its isomorphic copies), which, as a rule, are not 
isomorphic to the original model. Moreover, there is another natural 
equivalence, the “local” modal equivalence of models, much stronger than 
the usual one, but still weaker than isomorphism; see (Parikh, 1981, 
Sect. 6). We show in this section that, thanks to the names, modal 
equivalence guarantees isomorphism in the Combinatory case, and that, 
thanks to v, local and usual modal equivalence of models coincide. 

DEFINITION 2.1. An elementary formula, EF, is any of the types 

@ d, @ p, @ (a)d, where c, dEC, aen,,, pEQPo. 

DEFINITION 2.2. (i) An elementary set is any set r of EF’s such that 
for all c, d, e E C, p E @,,, and a E l7,, 

.) @ cEr,and 
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if @ de r, then: 

.) Qefzrimplies @eEr 

.) @ pErimplies + pef 

.) @ (a)eErimplies @ (a)eET 

.) @ (a)cErimplies @ (a)deT. 

(ii) if f is elementary, then the set Tu { 1 A/A is EF & A&r} is 
called a fill set (over r ). 

DEFINITION 2.3. For a given model A’= (M, R, x, V), the full set over 
the set 

{ @ d/x(c) = x(d)) u { @ P/X(C)E VP)} u { @ (a>Mc) &x(d)) 

is called a diagram of A, denoted diag(A’). 

Obviously, diag(A) is recursive in J# (in the familiar meaning of this 
notion), and 

(1) A! ,I= diag(A’). 

DEFINITION 2.4. For a full set r, we define a model mod(r) = 
(M, R, x, V) as follows. Let c - d stand for @ de r, which is obviously an 
equivalence reelation, and let )c) =br (d/c - d}. Then we set 

M=DFC,-, X(c)=DF ICI, w)=DF {ICI/@ P4, 

K=DF {(ICI, WI)/@ <a)dETI, 

and define R, and V(A) as the usual inductive extensions respecting the 
definition of model. 

The fact that mod(f) is indeed a model is justified by the definition of 
elementary sets, which implies that - is an equivalence relation correct to 
R, and V(p). 

It is clear by inspection that for an arbitrary full set r and a model A’, 

(l*) mod(r) t= r 

(2) A! + I- implies r= diag(M) 
(2*) A k r implies mod(r) = A!; 
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hence, by (1, l*, 2, 2*), we get 

(*) JY k f iff r=diag(~Z) iff mod(r)=&. 

From (2*), with r= diag(Jlt), and (1) we obtain 

(3) mod(diag(&‘)) = M. 

From (2), with d =mod(r), and (l*) we obtain 

(3*) diag(mod(r)) = f. 

Thus we arrive at the following: 

CORRESPONDENCE THEOREM 2.5. There exists a bijective correspondence 
diag ( = mod-‘) between models and fill sets such that for each model 4 
and full set r, 

(*)A b r#r=diag(&) iffmod(r)=&. 

SCOTT'S ~OMORPHISM THEOREM 2.6. M=M iff& i= diag(Jlr). 

Proof (if) Let JZ bdiag(N). Hence, by (2), diag(J”) = diag(A) and 
therefore mod(diag(J1’)) = mod(diag(A)). So, by (3), JV” = A. 

(only if) J? = N guarantees diag(&) = diag(.N), and by (1) 
J? ‘)= diag(N). 1 

COROLLARY 2.7. A? # Af only if A? = JV. 

The similarity between the above theorem and Scott’s (1963) L,,, 
isomorphism theorem was pointed out to us by Slavjan Radev. The dif- 
ference is that Scott’s L,,, -language admits intinitary conjunctions nr\, and 
therefore instead of a set diag(&), a single formula ,$& sdiag(X)A suffices 
for model &“s description over L,,,. An analogue of that theorem might 
be found in Goldblatt’s (1982, p. 174) Corollary 3.7.3; we spare a comment 
on Goldblatt’s approach for the final discussion. Let us note also that the 
presence of v, though convenient, is not essential for the proof of Scott’s 
theorem, cf. (Passy, 1984). 

Following (Parikh, 1981), with some change in the notation, we set 
(the sub-script L is for ‘local’): 

J.4 t= J”, if V’A (N k A only if A k A), 

A@ l=L.MT if Vx .XEM 3Yy.N VA (A!, x k A iff N, y +A), 

~#LJ-, if JZ +,NandN +rL. 

THEOREM 2.8. For the combinatory language we have: 
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Proof: First we prove the only-if directions: for the first three of them, 
only the presence of v is essential, while the fourth comes from 
Corollary 2.7. Then the trivial implication from &’ = JV to ,& + L A/‘ closes 
the proof-cycle, thus proving the if-directions. 1 

Such results do not exist in classical modal logic: Parikh (1981) notes 
that # does not imply # r, and also gives an example of two models J4 
and JV, over the same universe, with J! HL ,I/‘, which are still non- 
isomorphic; this counter-example disproves the Correspondence theorem in 
the PDL case. 

3. Deductive System for CPDL 

We propose the following axiom schemes and rules. 

(i) From PDL: 

(Bool) All Boolean tautologies 

(n,) C~l(~-~)-fC~l~+C~l~) 

(;) (a; P)A - <a)(P)A 

(~1 (auP>A++(a)A v (P)A 
(?) (A?)B++A A B 

(*) (cr*)A++A v (a)(cc*)A 

(ii) The Combinatory axioms: 

(vl) A+ @A 

(~2) GOA+ @A 

(~3) A-t IY3A 

(~4) (cr)A+ 0 A 

(21) oc 

i 

-for the universe program v 

(Z2) O(c/\A)+El(c+A) i 
-for the constants from C 

(iii) The rules: 

(MP) If t A and t-A -+ B, then 1 B. 

(Ind) Ifl--[y][&]A,forallk<o,thent-[Cy][a*]A. 

(Cov) If l- [y] 1 c, for all CEC, then l- [y]O. 

(Net) If 1 A, then j- EIA. 
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(iv) For CPDL” we add the axiom scheme 

in) (anb>c++<a>cA <P>c 

SOUNDNESS THEOREM 3.1. 1j-t A, then +A. 

ProoJ: Almost straightforward induction on I-. 1 

Now we show that the usual for PDL necessitation rule 

(Net,) If t- A, then b [a] A 

is admissible over CPDL, and that the Segerberg induction axiom 

(ind) A A [a*](A + [a] A) + [a*] A 

is a theorem of CPDL. 

LEMMA 3.2. (Net,) is an admissible rule, for each a. 

Proof: Immediate, by (Net), (v4), and (MP). 1 

LEMMA 3.3. (ind) is a theorem of CPDL. 

Proof: Take y =,-,r (A A Ca*lM -+ Cal4) ?, and apply (Ind), via 
induction on k. 1 

CONSERVATIWNE~~ THEOREM 3.4. CPDL is a conservative extension of 
PDL (i.e. each PDL formula provable in CPDL is provable in PDL as well). 

ProoJ: The above two lemmata show that CPDL is indeed an extension 
of PDL. For conservativeness, let A be a PDL formula (i.e., v, c&,4) with 
t-A. Then, by the Soundness theorem, l==A. The CPDL models are 
precisely the enrichments of the countable PDL models, hence A is valid 
in each of these last, Therefore, by the finite completeness of PDL, 
I- PDL A. 1 

Comments on v and Z 3.5. A. For each a E fl, [a] is a K-modality (K, 
for Kripke, is the “minimal” modal logic determined by (Bool), 0 ol, (Net,) 
and (MP)), and, moreover, [a] is a PDL-modality, whereas q is even an 
S5. Therefore we shall take due dividents from deducibility in the sub- 
systems K, PDL, and S5 of CPDL; (K) will refer to formal manipulations 
in the sub-system K. 

B. Axiom (~4) says that all programs agree with v, i.e., R, E R,, for 
all a. 

C. Axiom (Zl), or equivalently @ 1, says that each name names 
some state, and this axiom was the initial stimulus to introduce v in the 
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language. Axiom (.Z2), or equivalently @A + q A, says that any name c 
names only a single state, and more precisely, that the states namesakes are 
syntactically indescernible. 

D. The o-rule (Cov) intends to say (under the limitations of our 
finitary & propositional syntax) that each state is nominated, i.e., that the 
names cover the whole model, making 1 surjective. By a contraposition, 
(Cov) hints that, if (y) 1 holds (at certain point), then there should be 
some c such that (y )c holds (at the same point). This covering might be 
perfectly guaranteed by either an inlinitary axiom b WcEZ c, or by a 
predicate one t- (3c)c (see Chapter III). The prefixes [y] in (Ind) and 
(Cov) will be necessary for the proof of Deduction Lemma 4.13; thanks to 
the presence of ; and ? the compact prefix [y] serves instead of the usually 
employed admissible forms of (Goldblatt, 19821, in terms of which (Cov) 
would look like this: 

If k [al](A1 + [az](Az+ ... [ak](Ak+ ic)...)), for all cEZ, 
then k [al](Al + [a2](Az-) ... [ak](Ak-+O)...)). 

The rules (Ind) and (Cov) play a key role in our completeness proof, and 
we reserve some informal words on the o-rules for the final discussion. 

E. The reduction of the “global consequence” to the “consequence,” 
discussed in Section 1, has general implications on the use of finite 
inference rules. In modal logics, we use the rule “from A infer B” twofold, 
to capture both: 

(i) the global consequence: V&Z (A k A only if J$’ k B); and 

(ii) say, the universal consequence: V&(JY + A) only if V.&’ 
(A t= B). 

Having v one can therefore avoid the global use of the rule, postulating the 
axiom t- q A -+ q B instead. This had already been exemplified in 
Lemma 3.2, showing the rule “from A infer [a] A” admissible. An illustra- 
tion is also PCA’s, A {a} B, axiomatization: Floyd-Hoare rule of the type 
(see [Parikh 19811) 

“from A,{a,}B,, . . ..Ak{ak}Bk infer A{a}B’ 

simplifies to an ordinary axiom: 

t-i 13(Aj+[a,]Bj)+~(A-,[a]B). 
j= 1 

F. The deductive system suggested for CPDL is perhaps not the 
most economic one: (vl) and (~2) follow from (~4); the four axioms (~14) 
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and the single scheme (cl)A + [ fi] 0 A are interchangeable over CPDL; 
the axioms (Cl, 2) could be compacted as @A c, q ,4, and our 
preferance in these cases is a matter of taste. Further, see Section 7, the 
o-rule (Ind) and the axiom (ind) are interchangeable over the basic 
CPDL, where the rule (Cov) is even redudant. In these cases our choice is 
motivated by a long range axiomatic programme, keeping the system 
resistible to restrictions, extensions, and other mutations of the ground 
language. 

Next we introduce the linitary rule 

(cov*) If k [y] 1 c, for some cby, then k [r]O, 

which is shown to be equivalent to (Cov), over CPDL. Before this 
equivalence is shown one lemma is needed, 

Let us denote by 

c-1 “‘Ck 

d, ...dk A 

(where d,, . . . . dk are different and cl, . . . . clc are arbitrary letters from C) the 
uniform substitution of d,, . . . . dk in A, by cl, . . . . ck. 

SYMMETRY LEMMA 3.6. Zf j-A, then, for each substitution 0, t CJA. 

Proof: (By induction on k . ) 
If A is an axiom, then the claim is clear by inspection. 
If A is deduced by some of the rules (MP), (Net), or (Ind), then the 

result follows from IH and the definition of substitution, the respective rule 
being applied. 

If A is deduced by (Cov), then A = [r]O, for some y, and k [r] 1 c, for 
all c. Let 

c, “‘Ck 
O=,‘d, . ..dk’ 

and let dck*y and d# {cl, . . . . ck, d,, . . . . d,}. Let 

cc, . ..c 
oc=DFddr . ..d.’ 

We have k [y] 1 d, hence by IH, kc~~[y] 1 d; and CT~[Y] 1 d= 
[o,r]c~, 1 d= [oy] 1 c. So, k [a~] 1 c, which is the case for all c. By 
(Cov), j- [ay JO, i.e. FoA. 1 

643!93/2-5 
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LEMMA 3.7. The rule (Cov*) is admissible. (This was pointed to us by 
Dimiter Skordev.) 

ProoJ Let k [r] 1 c, for some c#y. Taking 

d 
a=-, 

c 

by the Symmetry lemma 3.6, we obtain that k [y] 1 d, which is the case 
for arbitrary d. Hence, by (Cov), k [y]O. 1 

LEMMA 3.8. The rules (Cov*) and (Cov) are interchangeable for CPDL. 

Proof. The less trivial implication is Lemma 3.7. 1 

Remark on the (Cov)-type Infinitary Rules 3.9. Having the equivalence 
between (Cov) and the finitary (Cov*), we say that (Cov) is a quasi-o-rule 
for CPDL. Obviously, (Cov) will be a quasi-o-rule for each extension of 
CPDL respecting the Symmetry lemma. Let us take an arbitrary w-rule of 
the type 

(RI If t- CYI 4c,, . . . . c,), for each substitution of ci, . . . . ck 
in A, then k [r] B. 

(Obviously, (Ind) is not of that type.) Let us define (R)‘s finitary version 

(R*) If k [y] A(c,, . . . . ck), for some ci, . . . . ckclhp, then 
t- CrlB. 

A trivial generalization of Lemma 3.8 says that, if some extension d of 
CPDL is symmetric, i.e., if it respects the Symmetry lemma 3.6, than (R) 
and (R*) are interchangeable for b, i.e., that (R) is a quasi-o-rule for B. By 
*B we shall denote the version of &’ in which each such (R) is replaced by 
(R*), not necessary meaning that 6 = *b. 

The following facts will be frequently used in the sequel. 

Exercise 3.10. 

(i) k O(c A A)o @A 

tKl(c+A)++mA 

(ii) k @A++ q A 

(iii) k @(A A B)* @A A @B 

(iv) 1 @A-+ [cr](c+A) 

(v) t- @ Od. 
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LEMMA 3.11. k (tx)(c A A)+-+ (a)~ A @A. 

Proof. (We recall that (K) denotes provability in the minimal modal 
logic K.) 

( + ) by (K) and by (~4). 

(~1 t(a)c~ @A + (CI; c?)l A q (c+ A), by (;), (?), and (~4) 

* (a; c?) 1 A [a](~ + A), by (~4) 

+ (a; c?) 1 A [cr; c?] A, by (?) and (;) 

+ (a; c?)A, by (K) 

COROLLARY 3.12. + @ (c()c A @A+ @ (a)A. 

Proof: Substitute ;;a for a. 1 

DEFINITION 3.13. The formula A is closed, if for some B, k A t-t 0 B. 
Let A* range over the closed formulae and their Boolean combinations 
(which also turn out to be closed). 

For instance, @ B, q B, L3 B, are closed. 

AN S5 EXERCISE 3.14. j--A--DA”, t-A’crOA”, k0A- 
of3A”. 

EXERCISE 3.15. t- [y] A- -A- v [y]O. 

Proof 

(+-) t(A-~[y]A”)~([y]O-,[y]A-),byExercise3.14,(v4)and(K). 

t-1 FCYIA- A ~C?IO+(Y)A->~YW. 
jOA--,by(v4) 

+ A -, by Exercise 3.14. 1 

COROLLARY 3.16. t-A” ++ q A-. 

Reflexions on Intersection 3.17. Let us turn back to the initial tri-modal 
case discussed in the Introduction, with modalities (a n j?), (a), (/?), free 
of * and the other operations. In this case we shall have an admissible- 
forms-analogue of (Cov); see Comment 3.5.D. Since the axiom scheme 
( n ) /-- (a n /I) c c, (a) c A (p) c respects the Symmetry lemma, this only 
o-rule vanishes as well, leaving behind a nice finitary axiomatics for the 
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intersection. Therefore, we have to have (c( n 8) A -+ (a) A A ( fi ) A 
provable. Indeed we have 

PR~Po~ITIoN. CPDLnt--((c4nj)A + (ol)A A (p)A). 

Proof: Through (Cov), in about 10 steps. Omitted. (See the proof of 
Lemma 11.1.1.) i 

We shall give an axiom for u that is dual to ( n ), thus shading the 
stimulating modal contrast between u and n. 

PROPOSITION. The axiom (u’) (ccufl)cct(a)c v (/?)c is inter- 
changeable, over CPDL, with the union axiom ( u ) (tl u /?) A c-f 
(a)A v (B)A. 

Proof: Through (Cov), in about 20 steps. Omitted. (See the proof of 
Lemma 11.1.1.) 1 

4. Proof Theory 

In this section we investigate the syntactic o-analogues of model and 
state-the notions of “logic” and “theory.” The names and v, on the one 
hand, import some fresh dependences between these two notions, and on 
the other hand, do not damage the classical results: Deduction lemma, 
Separation lemma, Lindenbaum lemma. The technique exploited will be 
used several times in the sequel-when inlinitary rules are dealt with. This 
technique is transferred from (Tinchev and Vakarelov, 1983), and it 
probably originates from the Q-filters machinery of (Rasiowa and Sikorski, 
1963), or later from (Goldblatt, 1982). 

DEFINITION 4.1. A simple extension of CPDL, or fogic (over CPDL) is 
any set of CPDL formulae L such that: 

(a) L contains all axioms of CPDL; and 

(b) L is closed under (MP), (Ind), (Cov), and (Net). 

DEFINITION 4.2. Where L is a logic, an L-theory is any set TG @ such 
that: 

(a) L E T; and 

(b) Tis closed under (MP), (Ind), and (Cov), 

By deductive set we mean logic or theory. The letters L and T will range 
over logics and theories, respectively; L k A, FL A, and A E L are 
synonyms. 
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DEFINITION 4.3. A deductive set Q is consistent, if 0 # Q. 

DEFINITION 4.4. (i) T is maximal, if V’A (either A E T or 1 A E T) 

(ii) L is maximal, if VA - (either A - E L or 1 A - E L). 

Obviously, each logic is a theory; and the maximal deductive sets are 
consistent ones. The next five lemmas are easy exercises. 

LEMMA 4.5. If L is consistent, then, for all c, 1 c $ L. 

LEMMA 4.6. If T is maximal, then, for some c, c E T. 

Notation 4.7. L” =DF {A/OAEL};$P~=~,(A/~AET}. 

LEMMA 4.8. If L is a (maximal) logic, then L’ is a (maximal) theory, 
and L= fl{L”/c~C}. 

LEMMA 4.9. Zf T is a (maximal) theory, then J& is a (maximal) logic, 
and Y-- is the greatest logic included in T. 

LEMMA 4.10. (i) rfc~ T, then (YT)” = T. 

(ii) For each c, qLc, = L. 

DEFINITION 4.11. By log(I’, A) (respectively, th(I’, A) we denote the 
least logic (theory) containing Tu {A}. 

Obviously, th(T, A) c log(T, A). 

LEMMA 4.12. rf VB (BE Tu (A} implies El BE th(T, A)), then th(T, A) 
is a logic. 

Proof: Straightforward induction on deducibility in th(T, A). i 

COROLLARY. th( L, A - ) = log( L, A - ). 

DEDUCTION LEMMA FOR THEORIES 4.13. A -+ BE T #BE th( T, A). 

Proof. The “interesting” part is (if). Let B E th(T, A) and 
TO=DF {D/A+lkT}. T,, is an L-theory: Obviously, I, c Tc: TO and T,, is 
(MP)-closed. The (Ind)-, respectively, (Cov)-closeness of r, follows 
immediately from that of T, by the axiom (?). (At that point we actually 
make use of the prefixes [y] in (Ind) and (Cov).) So, the theory TO 
contains T u {A >, and hence BE th( T, A) c T,,. By the definition of TO, 
A+BET. B 
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DEDUCTION LEMMA FOR LOCKS 4.14. A- +BEL iff BE log( L, A-). 

Prooj By the Deduction lemma for theories and the Corollary to 
Lemma 4.12. 1 

SEPARATION LEMMA FOR THEORIES 4.15. Let A$ T. Then there exists a 
maximal theory T* such that TG T* & A$ T*. 

Proof. Let To =DF th( T, 1 A). By the Deduction lemma for theories, To 
is consistent. Let B,, B,, B,, . . . be an enumeration of @. (Here we use the 
countability of CPDL’s language.) By induction on n, we shall construct a 
chain To E T, G T2 E . . . of consistent theories. Their union will yield the 
required T*. (The main concern will be to ensure that, if (y ) 1 (resp., 
( y ) (a* ) A) occurs in the chain, then for some c (resp., for some k), ( y ) c 
(resp., (7) (~8) A) should occur in the chain as well.) 

IH: Let T, be defined as a consistent theory. 

Let, for short, D=,, B,, and (0) stand for (Ind) or (Cov). 

(A) If th(T,, D) is consistent, then T,,+ i =bF th(T,, D) is evidently 
consistent. 

(B) If th(T,, D) is not consistent, then, by the Deduction lemma for 
theories, 1 D E T,, . 

(Bl) Let B be not of the type “consequence of (Q),” i.e., D # [y]O 
and D # [y] [or*] A. Then T,,+ i =bF T,, is consistent. 

(B2) Let D be of the type “consequence of (a)“-i.e., D = [y]O or 
D = [y] [E*] A-with { Di/j < o > being the premises of that (0). 

If Vj(D, E T,,), then the (Q)-closeness of T,, and 1 DE T,, would imply 
inconsistency of T,,, which, by IH, is not the case. So, 3q (D,$ T,), and by 
the Deduction lemma for theories, T, + , = ,,r th( T,, 1 D9) is consistent. 
This concludes the definition of T,, + , . 

Let T* =DF IJ { T,/n -CO}. We have: 

(a) LG Tc T,& T*; 

(b) T* is (MP)-closed; 

(c) A $ T*: by Vk (1 A E T,, s Tk & Tk is consistent); 

(d) 04 T*: by (b) and (c); 
(e) VB (BE T* or -IBE T*): this comes from cases (A) and (B) 

above; 

(f) T* is (Q)-closed: let Dj, for j<w, be the premises and D, the 
consequence of (52). Let Vj (0, E T*), and let D be B,. Suppose B, + T*, 



COMBINATORYDYNAMICLOGIC 291 

then we should have the case (B2) and some q < w  with 1 D, E T,,+ I E T*, 
i.e., ~D,E T* & Dqg T*--a contradiction with (d). 

Thus (a-f) state that T* is a maximal L-theory and Tc T* and A 4 T*. 1 

SEPARATION LEMMA FOR LOGES 4.16. Let A #L. Then there exisrs a 
maximal logic L* such that L E L* & A 4 L*. 

Proof We have that A $ L, whence I3 A $ L, and that L is a theory as 
well. By the Separation lemma for theories, there is some maximal L-theory 
T with q A 4 T (& L E T). By Lemma 4.9, -13’~ is the required L*. 1 

LINDENBAUM LEMMATA 4.17 (Corollaries to the Separation lemmata). 
Each consistent theory (logic) can be extended to a maximal one. 

DEFINITION 4.18. A logic is categorical, if it has no more than one 
model (up to isomorphism). 

LEMMA 4.19. If Q is a maximal deductive set, then Q contains a full set, 
cf Definition 2.2. 

Proof This is the full set over {A E Q/A is Elementary Formula >, 1 

THEOREM 4.20. If a logic contains a full set, then it is categorical. 

Proof: By Scott’s Theorem 2.6. [ 

THEOREM 4.21. Each maximal logic is categorical. 

ProoJ: By Lemma 4.19 and Theorem 4.20. 1 

Now we are ready to give a slightly unorthodox completeness proof 
(cf. Section 0.6) for modal logic: we take a disprovable formula A, and 
according to the Separation lemma, blow its negation 1 A up to a maximal 
theory T; T should contain both a full set r (Lemma 4.19), and some name 
c0 (Lemma 4.6). Then r determines a model &Z = mod(r), cf. Section 2. 
Now it suffices to prove that each formula from T is satisfied at the state 
of &Z determined by co, i.e., that M, /co1 + A, for each A E T. We omit this 
trifle, with a reference to Note 11.1.7 below. 

In the next section we complete a slightly different version of the com- 
pleteness proof, which is not explicitly dependent on the results from 
Section 2, and which will be the base for the remaining completeness results 
throughout the paper. 
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5. Completeness Theorem for Simple E.xtensions of CPDL and of CPDL  ̂

TRUTH LEMMA 5.1. Let T he a maximal L-theory. Then: 

(1) @AET $f H A E T 

(2) @ ~AET i f f  @ A $ T 

(3) @(A v B)ET i f f  @AETor @BET 

(4) @(a)AET i f f  3e(@(a)eeT& @AET) 

(5) @ GdET 

(6) @ (afl)dE T #” 3e( @ (a)ee T& @ (/l)de T) 

(7) @ (aufl>de T i f f  @ (a)de Tor @ (P)de T 

(8) @ (a*)dE T i f f  3h.d @ (ak)dE T) 

(9) @ (A?)dE T i f f  @dET& @AET. 

For CPDL” we add: 

(10) @ (anfi)de T i f f  @ (a)dE T& @ (P)dE T. 

Proof: ( 1) follows from Exercise 3.1O(ii). 

(2) follows from (1) and the definition of maximal theory. 

(3), in the interesting ‘only if’ direction, follows from (2) and (K). 

(4, if) follows from Corollary 3.12. 

(4, only if) Let @ (a) A E T. Suppose, for contradiction, that Ve 
((?a)e+! T or @ A$ T). Then, by the maximality of T, [?a] lee T or 
@ 1 A E T, for all e. By (K) and Exercise 3.1O(iv), we have that in either 
case, [?a] (A -+ le) E T, for all e. Now (Cov) leads to a contradiction. 

(5) is Exercise 3.10(v). 

(6) follows immediately from (4) with A = ( /?) d, and axiom (; ). 

(7) follows from (3) and axiom ( u ). 

(8, if) By induction on k, we prove that t- (ak)A + (a*)A, hence 
we have that k @ (ak)d-+ @ (a*)d which suffices. 

(8, only if) Let @ (a*)dg T, and suppose that Vk (0 (ak)d$ T). 
Then, by (2) and Exercise 3,1O(ii), Vk([s][ak] lde T), and now the (Ind)- 
closeness of T yields [t][a*] lde T, which contradicts (2)(a*)d~ T. 

(9) follows from axiom (?) and Lemma 3.11. 
(10) follows from axiom ( n ) and Exercise 3.lO(iii). 1 

Note. (Cov) was essentially used in (4) and (6), and (Ind) in (8). 
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We recall that .,z?? is a model for L, or L-model, if J! k L, and that +=L 
stands for validity in all L-models. 

COMPLETENESS THEOREM, FIRST FORM 5.2. If L is consistent, then L has 
a model. 

COMPLETENESS THEOREM, SECOND FORM 5.3. Zf kLA, then kLA. 

LEMMA 5.4. The two forms of the completeness theorem are equivalent. 

Proof: First form implies Second form: Let FL A, i.e., A 4 L, and so 
q A 4 L. By the Deduction lemma 4.14, the logic log(L, 0 1 A) is consis- 
tent, and by the First form, it has a model &?. Since the L-model 
& + 0 1 A, i.e., ,X PA, FL A. Second form implies First form: Let L 
have no models. So k=L 0, and by the Second form, FL 0, i.e., L is incon- 
sistent. 1 

Proof of the Completeness Theorem, First Form. The logic L is a consis- 
tent L-theory. By the Lindenbaum lemma 4.17, there exists a maximal 
L-theory T. 

Let c-d stand for @ de T, and ICI =oF {d/dc,Z & c-d}. 
Let M=,, E,-, x(c) = bF ICI (1 is obviously surjective on M), 

V(A)=DF (/cl/@ AE T), R,=DF ((ICI, Id/)/@ (cc)dg T). An inspection 
verifies the correctness of this factorization. By the Truth lemma 5.1 we 
obtain that & = (M, R, x, I’) is indeed a model, which we call the canoni- 
cal model for L (generated by T). Indeed, .4Z is an L-model: Let A EL. 
Then q A E L z T, i.e., @ A E T. By the definition of V, &+‘, ICI + A, which 
is the case for each c E Z. So ,I l= A. 1 

6. Downward Liiwenheim-Skolem Arguments 

The completeness theorem just proven justifies our choice of 
“X-surjective,” whence countable models, which is, on the one hand, a 
restrictive option, but, on the other, a common sin today (cf. (Harel, 
1984)). Another vindication for this choice-a version of the downward 
Liiwenheim-Skolem theorem-will be presented below. 

Let us for a moment drop the restriction in Definition 2.1 for coun- 
tability of the models, hence for surjectivity of 1, and call the non-surjective 
models thus obtained nsj-models. “Non-surjective” means that x is not 
necessary surjective; nsj-validity, denoted /==NSJ, means validity in nsj- 
models. 

LEMMA 6.1. Let ,X = (M, R, x, V) be an nsj-model; let sO E M and 
cO E Z. Then there exists an nsj-model J# + = (M, R + , x + , V + ) such that 
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x +(cO) =sO, and for each A and a, if cOdA, CI, then R,+ = R, & 
V+(A) = V(A). 

Proof: We define x+(cO)=s,, and, for aEn,, PE@~, c~Z\{c,}, 

R,+ = R,, V’(P) = UP), x + (cl = x(c). 

Then we extend R+ and V+ inductively on I7 and @ and obtain the 
required &? + . 1 

COROLLARY 6.2. Let, in the above notation, sR,sO & co&x Then we 
have sR:s, and 4+, s,, kcO. Therefore Ai, s /=(a)~~. 

SOUNDNESS THEOREM FOR nsj-MODELS 6.3. Zf FA, then knSj A. 

Proof. (By induction on t- . ) All axioms of CPDL are obviously nsj- 
valid. For all the rules but (Cov) we have more than is required: if the 
premises of such a rule are valid in a fixed nsj-model, then the consequence 
will be valid in the same model. Hence nsj-validity of the premises imphes 
nsj-validity of the consequence. 

Let the consequence [alO of (Cov) be not nsj-valid. Hence for some nsj- 
model &’ = (M, R, x, V), and s E M, J%‘, s + (a) 1; i.e., there is some s0 E M 
with sR,s,,. Let ~,&‘a. Then, in the notation of Corollary 6.2, &! +, 
s k [a] -rcO. So not all the premises of this (Cov) are nsj-valid. 1 

Since nsj-validity implies standard validity, the Completeness theorem, 
Second form, 5.3, combined with the above theorem proves 

DOWNWARD LWENHEIM-SKOLEMTHEOREM 6.4. (if If A has an uncount- 
able model, then A has a model as well; 

(ii) If A is “uncountablv” satisfiable, then A is satisfiable as well. 

Anyway, the nsj-model, though reliable for modelling a single formula, is 
not an adequate notion for our (Cov)-based incompact proof theory: there 
is a set of formulae which does have an nsj-model, and which is 
nevertheless inconsistent, and therefore with no standard model. Such is 
the set 

((c,?;a)l)u {[c,?;a] -1c~/k<0), 

which is modelled on each nsj-model MO, in which the state x(c,,) has some 
a-successor, but no named a-successors. 

Another counter-example is presented by the failing upward 
Lowenheim-Skolem theorem (or better say failing big model property): the 
formula El(c, v . . . v ck) is obviously satisfied in models &! with 
card(A) <k, and in no infinite model. 
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1. Finitary Axiomatization and Decidability Results for CPDL 

Gargov (1985), following Segerberg’s (1977) filtration method, estab- 
lishes a finitary axiomatization, the finite model property (fmp), and hence 
decidability of CPDL. A review of his results follows. 

DEFINITION 7.1. Let Finitary CPDL, @CPDL, denote the system 
obtained from CPDL by dropping the two w-rules (Ind) and (Cov), and 
adding Segerberg’s axiom (ind): A A [a*](A + [cl ]A) -+ [cc*] A. Let kF 
denote provability in FCPDL. 

Obviously, the theorems of SCPDL form an r.e. set. 

THEOREM 7.2. Zf k.F A, then k A. 

Proof: The only non-trivial step is in Lemma 3.3 above. m 

THEOREM 1.3 (Gargov, 1985). If tfF A, then, for some finite model 4, 
A? FA. 

Proof Through filtration, cf. (Segerberg, 1977). 1 

So we have that the non-theorems of FCPDL also form an r.e. set. 
Hence: 

COROLLARY 7.4. PCPDL is decidable. 

The decision procedure for FCPDL has exactly the same complexity as 
the one for PDL: deterministic bounds exponential in the size of the 
formula. 

THEOREM 7.5. If k A, then t-F A. 

Proof: By the Soundness of CPDL and the Completeness theorem 7.3 
for BCPDL. 1 

COROLLARY 7.6. F-A iffkF A. 

COROLLARY 7.7. CPDL is decidable (in the same exponential bounds as 
BCPDL and PDL). 

Corollary 7.6 indicates two curious finitistic points for the basic system 
CPDL: that the rule (Ind) is reducible to (ind) and that (Cov) is not only 
quasi-o, but even redundant. We leave most of the comments we are able 
to make on these points to Section II.6 and the final Discussion. However, 
we hasten to show the negative answer (given by Goranko) to a question 
suggested by Corollary 7.6: “is (Cov) always redundant?” 
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THEOREM 7.8. There are extensions oj CPDLfor which the ruie (Cov) is 
not redundant. 

ProoJ: Let, for a fixed program letter a, 

CPDL, =uF (CPDL without (Cov)) + {k Cc,?; a] ~C/CE Z), 

and let J%eb be an nsj-model, as described at the end of the previous section, 
in which x(c,) has some a-successor, but no named a-successor. By induc- 
tion on provability in CPDL,, one obtains that 

CPDL, k A only if A0 k:A. 

Hence, since ,le k [c,?; a] 0, we have that CPDL, /+ Cc,?; a] 0, and there- 
fore the possible addition of (Cov) over CPDL, would bring some new 
theorems. 1 

As known since (Meyer et al. 1981) and (Harel, 1983), the decidability 
of the global consequence and the consequence problems for PDL (i.e., the 
problems of whether A is a consequence-global or not-of a set of 
formulae r, cf. Section 1) are both Z7f-hard, and precisely l7:-complete. 
As noted by Hare1 (1984), this result, being negative in nature, holds for 
extensions of PDL too, and so it holds for CPDL and its extensions. 

THEOREM 7.9. The decidability of both the consequence and the global 
consequence problems for CPDL is II l-complete. 

Convention 7.10. Given a logic L, we shall denote by Finitary L, Y-L, 
the system obtained from L, by the prescription of Definition 7.1 above. 
Extending the stipulation from 3.9, by 9*L we shall denote the 9- version 
of *L; so, if (Ind) and (Cov) are the only w-rules, 9*L=9 Lf (Cov*). 

This section presents a case of results not extendable to the intersec- 
tioned language: the filtration fails for SCPDL”. We leave the decidability 
questions for CPDL”, most of which are negative or open, to Section 11.6. 

Chapter II: Extensions of CPDL, or Applications of the Method 

In this chapter, several types of extensions of CPDL will be considered, 
completeness being a central point. In Section 1, three illustrations for 
simple extensions are discussed. One is the logic of deterministic atomic 
programs CDPDL, and the other is the logic of the so-called n-models, 
namely models whose cardinality is limited by the natural number n. The 
third example violates the classical modal canons, presenting, for each 
model A, a logic CPDLA whose only model is A. 
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Section 2 is motivated by some definitional extensions, which are tradi- 
tionally in the scope of dynamic and modal logics: intersection, union, 
complementation, converse, inclusion, and equality of programs. Each of 
these operations I3 is definable through some PC formula F, and the ques- 
tion is liow to axiomatize 8, given F. We show in Section 2.1 that if F 
is modally expressible, then the expressive formula immediately yields 
an axiomatization of 8. Most of the familiar operations are modally 
expressible, but nevertheless, the expressible formulae do not even include 
all V*- and 3*-PC formulae. In Section 2.2, we show that the addition of 
one quasi-o-rule increases the axiomatic power of CPDL up to axiomati- 
zation of each operator definable through a V*- or Zl*-prelixed-expressible- 
formula, which readily covers all V*- and 3*-formulae. The ultimate answer 
to that question is given in the next chapter, where the language of 
Quantificational CPDL, CDL, provides expressiveness, and a fortiori 
axiomatization, of all PC-definable operators, and thus ousts all quasi- 
o-rules. 

Section 3 deals with some extensions treating infinity. Considered are 
degrees of program non-determinism, including the predicate Va, which is 
true at points with infinitely many immediate a-successors; the logics of 
finite and infinite models (controlled by the axioms 1Vv and Vv); the 
traditional Polish iteration quantifier Z7a, which is true at points followed 
by arbitrary long paths of a-successors; axiomatization a la Streett of the 
familiar repeating Aa, true at points followed by infinite paths of 
a-successors. These last, 1701, Va, Aa, and a* are finally taken in a joint 
context to formalize Brouwer and KGnig’s lemma: Z7a -+ Aa v (a*) Va. 

In Section 4, two exotic extensions of CPDL are proposed, admitting a 
choice function in the models. One is the uniform selector operator p, 
where pa chooses a functional branch of the relation a, with the same 
domain. Another is the well-ordering predicate <, whose axiomatization 
utilizes p, asking pa, in state s, to select the least element of R,(s). 

Section 5 initiates another project. Suggested is a development of the 
propositional dynamic logic-which is both monadic (of one-argument 
programs, a(x)) and unary (of one-place modalities, [alp)-into a 
polyadic (a = a(x,, . . . . .Y~)) and multi-ary ([a] = [a](p,, . . . . p,)) theory. 
This suggestion is grounded on two representative examples. One is the 
extension with diadic function, coding pairs of possible worlds. The second 
is in a curious solution to an old question. The question was posed by 
Segerberg (1973), appealing to a simple axiomatization of two-dimensional 
modal logic (whose universes are Cartesian squares), the answer being 
given by A. Petkov (1987), whose elegant method applies to even all 
Cartesian degrees. These examples back the combinatory modal theory 
in its claims to be chosen as a basis for a “general theory of binary 
propositional connectives,” in the sense of [DoSen, 19861. 
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In Section 6, we discuss the role of the w-rule and some decidability 
questions. 

Warning. The results in this and the next chapters are presented a bit 
sketchily. By Completeness we shall mean the First form of the Complete- 
ness theorem. Each particular system in this and the next chapter will be 
an extension of CPDL, and so we agree to take it for granted that its 
syntax, semantics, deductive system, and even Truth lemma will extend, 
properly or not, those of CPDL. Those readers who feel some lack of 
motivation and argumentation for the investigations and the results in this 
chapter (in particular those starting to read the paper from this chapter) 
are advised to consult Chapter 0 and the final Discussion, while Chapter 1 
is a source for restoration of the missing completeness proofs, which, as a 
rule, will be mechanical extensions of the completeness proof for CPDL. 

1. Three Simple Extensions 

1.1. Determinism: CDPDL 

We enlarge CPDL’s deductive system with the scheme 

(det) k (a>~ -, Calc, for CEC, 

for all UE n, and call the extension Combinatory DPDL. By (DET) we 
shall denote the usual model “functionality” scheme: 

(DEW I- (a)A -+ Cal4 for all A. 

To demonstrate a typical syntactic use of the rule (Cov), we shall prove 
the following: 

LEMMA 1.1. CDPDL k (a) A --) [a] A. 

Proof: 

t (a)(c A A)+ (u)c A (v)(c A A), by Lemma 3.11 

+ [a]~ v [v](c + A), by (det) and (C2) 

-+ Cal c A Cal(c + AL by (~4) 

--) CalA by WI 
l- 1 [a] A + 1 (a)(A A c), by contraposition 

E [( 1 [a] A)?; a; A?] lc, for all c, by (?) and (;) 

k (a)A + [a] A, by (Cov) and again (;) and (?). 1 
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By the definition of CPDL models, if &X k(det), then R, will be a (par- 
tial) function. Therefore the canonical model will also be a deterministic 
one. So we immediately obtain 

THEOREM 1.2. Combinatory DPDL is complete with respect to deter- 
ministic models. 

Developing the “unwounding” method of (Ben-Ari et al 1982), Gargov 
and Passy (1988) establish the finite model property for CDPDL, proving 
that any satisfiable formula is satisfiable in a finite model which is, at most, 
doubly exponential in the size of the formula. 

THEOREM 1.3 (Gargov). CDPDL is finitely complete and decidable, 

Question. Is FCDPDL + (DET), or 9*CDPDL, complete and 
decidable? 

The “atomic” determinism might be combined with the structured 
constructs IF THEN ELSE and WHILE DO in the so called Structured/ 
Strict DPDL; see (Halpern and Reif, 1983). Then both completeness for 
CSDPDL and Ben Ari-Gargov-Halpern-Pnueli-Reif linite completeness 
results hold again. 

1.2. Limited Finite Models: CPDL’“’ 

Let diff (cr , . . . . c,) denote the formula /j i G jck G n @ 1 ck which says 
that c,, . . . . c, are names of pairwise different states. Note that Segerberg’s 
(1971) scheme 

(Alt,) [a-j/t, v [a](A,+A2) v ... v [a]@, A ... A &+A,+,), 

which guarantees (for separable models) that each state has less than n + 1 
a-successors, can be replaced by 

Let CPDL(“‘=,, CPDL + {k ldiff(c,, . . . . cn+,)>. The new axiom scheme 
keeps models’ cardinality below n + 1; we say that these models are 
n-models, and referring to them, define n-completeness. (Thus CPDL’“’ is a 
variant of Segerberg’s (1971) S5 Al&.) Of course, one has: 

THEOREM 1.4. CPDL’“’ is n-complete (and, a fortiori, finitely complete). 

Since we have an upper bound, n, for the refuting model, the non- 
theorems form a recursive set. So, we get: 

TI-EOREM 1.5. CPDL’“’ is decidable. 
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To find the decision complexity (a question posed by the referee), take, 
with no loss of generality, a closed formula A, fix an n-tuple of pairwise 
different names cI , . . . . c, not entering A, and abbreviate 

A(“‘=oF [v](c, v ‘.. v C,l)+A. 

Now, by the n-completeness of CPDL’“‘, and by a simple renaming of the 
model’s states, and by the completeness for CPDL, and by the Symmetry 
lemma 1.3.6, one has 

CPDL’“’ l+ A iff CPDL t+ A(“). 

Thus, the deducibility of A over CPDL (‘I) is reduced to deducibility of A’“’ 
over CPDL, which is decidable in a deterministic upper bound, exponential 
in the size of A(“), i.e., exponential in SIZE(A) + CONST(n). 

We shall continue with this topic, cardinality of models, in Section 3.1 
below. 

1.3. The Logic of the Model 

For a model &! let diag(&) be as in Definition 1.2.3. Let 
CPDL” =bF CPDL + fdiag(,&)}, i.e., the elements of diag(&) be added 
to CPDL as axiom instances (not schemes). We have that CPDL.@ is 
recursive in 4. Let k .# denote provability in CPDL,@. 

THEOREM 1.6. k-M A iff& k A. 

Proof The ‘only if’ part holds by 4’s modelhood for CPDL.K. The ‘if’ 
part follows from the categoricity of CPDL,# (Theorem II.4.20), and by the 
second form of the completeness theorem for CPDL.#. 1 

Note 1.7. A direct inductive proof (not appealing to completeness) 
exists for the last theorem, from which, on the other hand, the Complete- 
ness theorem can be derived as a consequence, as described at the end of 
Section 1.4. 

Thus, CPDL-K = {A/J%’ l= A), and therefore CPDL.& presents an 
axiomatization of MS tautologies, recursive in J#. Such a recursive 
axiomatization is not likely to exist for PDL models (though this question 
remains open). 

However, an analogue of Theorem 1.6 is suggested by Quantified 
dynamic logic QDL. Below, we dwell on that result, following the exposi- 
tion of Hare1 (1984). As tradition goes, reasoning in dynamic logics is 
usually stratified in three “decreasing” levels of abstractness: propositional, 
first-order uninterpreted, and first-order interpreted. The third, the most 
detailed level is claimed to be closest to reasoning about practical program- 
ming. At this level, models, called arithmetic structures, are rather specified 
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entities whose domain includes a first-order definable copy of the natural 
numbers w, and first-order definable functions allowing encoding and 
decoding of arbitrary finite sequences of the domain into this copy of w. 

The central theorem for Arithmetical completeness of QDL (Hare1 1984, 
Theorem 3.19) states that for any arithmetic structure d, and for any QDL 
formula A. 

d +A iff QDL+{F/FePC&d FF) t---A 

(we note that QDL includes PC). So Theorem 1.6 turns to be the com- 
binatory version of the Arithmetical completeness theorem, which version 
holds still on the propositional level. Thus the combinatory facilities 
suggest a successful (modulo the claims of QDL) abstract reasoning about 
real programs in concrete models. 

2. C,- and II,-Definitional Extensions 

Any PC formula F(c) = Qe G(a, p, e, c) of k free variables cl, . . . . ck 
performs, in each model A, an operation on a and p, resulting in a 
k-place predicate of the universe; in this context, we give the following: 

Notation 2.1. Rf=,, { hdcl ), ...t idck))/& ik F(c, 3 ..., ck)}. 

When k = 0, Rf is some (joint) first-order property of the program(s) 
cx( . ..) mentioned by F, such as transitivity, existence of (ir)reflexive point, 
equality between programs, universality (equality with v), etc. When k = 1, 
Rf can be thought of as the interpretation of a new formula, and when 
k = 2, as the interpretation of a new program in the language. In particular, 
all of the operations ;, n, u, 1, -‘, ?, c, = (but not, of course, *) are 
definable in such a way. 

Remark 2.2. (a) We fix F= Qe G(a, e, c, d); with no loss of generality, 
we assume the number of F’s free variables k to be 2, and skip the unary 
predicate letters appearing in F. By e,(a), or 0, we denote the operation to 
be axiomatized. The choice of k = 2 is made only to force 8 have the com- 
mon arity of a program. So, all considerations from now on apply to the 
case when each “program” in the language is a predicate of arbitrary finite 
arity. 

(b) In the paper, the axiomatizability-through-expressiveness results 
spelled out for CPDL will be valid for each definitional extension 8 of 
CPDL liable to the combinatory completeness proof (such as CPDL^). So, 
for such b, we shall afford the liberty of identifying B with CPDL, hence 
de with CPDL’. 
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To define CPDL’, we extend the definition of CPDL by the following 
clauses, respectively: 

Syntax of CPDL’. O(a) is a program. 
Semantics of CPDL’. x(c) &x(d) iff A’ It- Qe G(a, e, c, d) iff Qe(A’ #- 

G(a, e, c, d) (in the last formula Qe is the informal reading of the 
quantifiers). 

The question now is to find a deductive system generating the 
tautologies of the language with 6’ in the models of 8. 

2.1. Axiomatization of Expressible Extensions 

THEOREM 2.3. Let A(c, d) express F(c, d), cf: Definition 1.1.7. Then 

6%) @ <e(a)) d- 4~ 4 

yields a complete axiomatization of CPDL’. 

Proof: We simply extend the Truth lemma 1.51 with the clause 

@ (e(a)) de T iff A(c, d) E T, 

which is obviously fulfilled, by virtue of (Ax,). 
The definition of the canonical model is extended by 

R o(a)= ((I4 IdI)/@ (e(a))de T). 

So we have 

(I4 Idl)ERe iff @ (Q(a))de T iff A(c, d)E T 
iff A kA(c, d) iff 4 It F(c, 4, 

i.e., x(c) R,X(d) iff A IkF(c, d), and therefore A is indeed a CPDL’ 
model. 1 

Thus we obtain that expressibility implies axiomatizability. 

Query 2.4. Does the converse hold (at least in cases when axiomatiza- 
tion is given by a single axiom scheme)? 

Conjoining Theorem 2.3 with the Expressiveness theorems 1.1.9 and 
1.1.11, we obtain, respectively, the next two results. 

THEOREM 2.5. Let G(c, d) be an open PC formula, and 8 = 8,. Then 

(Axd @ (W>d++ G-k 4 

completely axiomatizes CPDL’. 
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THEOREM 2.6. Let G(c, d) he a PC formula without nested quantifiers, 
and 8 = eG. Then 

(Axe) @ (e(a)>d++G--(c, 4 

completely axiomatizes (CPDL + { 1, n } )‘. 

EXAMPLES 2.7. Extensions of CPDL with complement and converse: 

CPDL’. We extend the definition of CPDL by the additional 
clauses 

Syntax: 1 a is a program 

Semantics: R( ia) = W2\R(a) 

Axiom: (ia)c+-+ [a] ic. 

CPDL- ‘. We extend the definition of CPDL by the additional 
clauses 

Syntax: a ~ ’ is a program 

Semantics: R(a-‘) = (R(a))-’ 

Axiom: @ (a-‘)d- @ (a)c. 

Question 2.8. Are F*CPDL” and F*CPDL- ’ complete? (For 
F*CPDL” the question has been open since (Gargov, 1985)). Y*CPDL’ 
is not complete, cf. Section 7. 

We shall take a small advantage from n (recall that I = l? is the iden- 
tity, and a + = nF a; a*). Let cycle (a) be the predicate for existence of cyclic 
computation of the program a, formally with the semantics: 

s bcycle(a) iff 3n 3kk,, 3s,, . . . . s, (sl = s & sk = s, & Vj, d jcn(~jR.~j+ ,)). 

Since cycle(a) is expressible over CPDL  ̂ by the formula (a* ) (a + n I) 1, 
one obtains, as a side effect, 

THEOREM 2.9. CPDL  ̂ + cycle + {t-cycle(a) c* (a*)(a + n z) 1 } is 
complete. 

2.2. Axiomatization qf the Existential and Universal Operators over CPDL 

In this section, we shall use the power of the quasi-w-rules to strengthen 
the result of Theorem 2.3, and to axiomatize CPDL’jF, for each F which 
is V*- or 3*-prefixed expressible PC formula. We shall start with two 
examples: inclusion and equality of programs. 
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CPDL =. We extend the definition of CPDL by the additional 
clauses 

Syntax: ci c j? is a formula. 

Semantics: s l=(aEB) iff Vt (sR, t implies sR, t) 

Axiomatics: (Axc)a~fl+(<a>c+ <P>c) 

We should now require that theories be closed under the new quasi- 
o-rule (Incl), accordingly re-prove the Separation lemma, and add a new 
clause to the Truth lemma: 

@asPET iff Vd( @ (a)de T only if @ (/?)de T). 

Finally, we obtain: 

THEOREM 2.10. CPDL’ is complete. 

Note 2.11. Since anj?= l(lau ifi), and aE/Iiff an l/?=@, acb 

turns to be expressible over CPDL’, and therefore, by Theorems 2.3 and 
2.5 (cf. Remark 2.2.b above), axiomatization of c is obtained, over 
CPDL‘, by a single axiom: as/J c1 [a n l/l] 0. 

Under self-explanatory definitions for equality of programs, = , one has: 

THEOREM 2.12. CPDL = is complete. 

Thus we reached axiomatizations for a large part of relational-algebraic 
operations: ;, u , n, i, -‘, c, = , ?, *, v, z. However, the expressive 
limits of the model language encompassing these operations are still far 
from covering all formulae with two nested quantifiers, let alone all V*- and 
3*-cases, as we know by Proposition 1.1.12. So the next theorems will give 
many more axiomatizations than those guaranteed by expressiveness. 

Let F be any PC formula of the type F(c, d) = 3e G(a, e, c, d), where G 
is an arbitrary expressible formula and let G - be a CPDL formula expres- 
sing G. In the case of open G, i.e., existential F, we have G” E CPDL, cf. 
Section 1.1, and if G has no nested quantifiers, we have some G - E 
CPDL+{n,l}. 

Now we are ready to start with the axiomatization of CPDL’, for 0 = 
(?,(a). We have the specific for CPDL’ clauses: 

Syntax: 

Semantics: 

t?(a) is a program 

x(c) &x(d) iff 3e(A It G(a, e, c, d)) 
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and we add, on the deductive side, 

Axiomatics: (Ax,) G”(a, e, c, 4 --, @ (Qa)>d 
(Re) If t- [yl lG”(a, e, c, 4, 

for all e E E x ’ . . x C, 
then )- [r](c + [O(a)] Id). 

Exercise 2.13. Prove the soundness of CPDL’. 

Note 2.14. The rule (RB) is a quasi-o-rule for CPDL’. 

We define the CPDL’ deductive sets to be closed also under (R,), 
reprove the Separation lemma, and extend the Truth lemma by: 

TRUTH LEMMA 2.15. @ (O(a))dE T iff3e (G-(a, e, c, A)E T). 

Proof. (if) Follows immediately by (Ax@). 

(only if) Let @ (B(a))de T. Suppose that Ve(G’(a, e, c, d)$ T). 
Hence, Ve (lGc(a, e, c, d)~ T). So, by (Re) with y = v, 
q (c+ [&a)] ld)~ T, and so @ [e(a)] IKE T, which contradicts 
@ @(Wd~ T. I 

LEMMA 2.16. Let T be a maximal theory, and A’ the canonical model of 
T. Then .A’ 11 G(a, e, c, d) ifs G’(a, e, c, d) E T. 

ProoJ: Since G” expresses G, i.e., JZ IF G iff JZ k G”, by the definition 
ofM,&!I/- GiffG-ET. f 

COROLLARY 2.17. 3e (G-(a, e, c, d)E T) iff 3e (~2’ II--G(a, e, c, d)) iff 
(A IF 3e Gfa, e, c, 4). 

COROLLARY 2.18. @ @(a)>d~ T iffy@ It-FCC, 4. 

Proof By the Truth lemma 2.15, and Corollary 2.17. 1 

Corollary 2.18 guarantees that the canonical model is a model for 
CPDLe. Whence: 

THEOREM 2.19.a. CPDL’ is complete. 

Now, let 0 = 8, be defined through a universalization F of an expressible 
G: F= Ve G. Since tip is expressible over CPDL’-: we can, by Theorem 2.3, 
axiomatize 9, over CPDL’+ postulating 1 (tl,)d++ CO,,] id. For 
independent axiomatization of universal 0 we may give, analogically to the 
previous theorem, the obvious axiom and quasi-w-rule, and obtain 
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THEOREM 2.19.b. CPDL” is complete. 

To effectively use the full power of Theorems 2.3 and 2.19, one needs an 
explicit description of the sets of expressible PC formulae and so we once 
again stress on Problems 1.1.13. 

Question 2.20. Theorems 2.19 give only a sufficient condition for 
axiomatizability of (AxO) & (&)-type. We should mention a development 
of the axiomatizability-through-expressiveness idea, which would generalize 
“expressiveness” up to “C- and d-expressiveness” (i.e., expressibility of tirst- 
and second-order conditions by infinite disjunctions and conjunctions of 
CPDL formulae, instead of expressibility by a single CPDL formula), and 
extract further axiomatic benefits from those kinds of expressiveness. 
Examples of that kind are given in the next section. 

3. Infinities in Computations 

One can hardly speak of computation without touching infinity, and to 
approach infinity, human beings have devised iteration. Dynamic logics, 
too, exemplify that rule: the principal super-modal feature of PDL is the 
iteration *: [cl*] A CI Vn( [a”] A ). Likewise, in Algorithmic logic starring is 
another iterative construct, the iteration quantifier: (ZZtx)A c-t Vn( (a” ) A). 
Instantiating 1 for A in the last formula, we obtain the predicate (I7a)l or 
Z7a for short, for existence of arbitrary long paths of a-successors. Besides 
ITa, there are two more notions natural in this context. 

One is the predicate, denote it by V, for existence of arbitrarily wide 
(hence infinitary) fans of a-successors: Va c-f Vn( (a), 1 ), where x l= (a), 1 
holds when x has at least n different (immediate) a-successors. (These (a), 
have been systematically studied-under the name of graded modalities-by 
the Roma group, see (Fattorosi-Barnaba and Carro, 1985).) 

The other is the predicate A, for existence of infinite path of a-successors, 
which in rough notation might be expressed by da c--) (au) 1. These three 
predicates l7, A, V and the operation * are naturally encapsulated in the 
famous Brouwer-Kiinig lemma: Z7a -+ Aa v (a*) Va. In this section we 
apply the combinatory machinery to that software of infinity. 

3.1. Bounds on Non-determinism and Cardinality 

We shall pay attention here to the predicate (a), A (for 2 <n < w)-a 
generalization of (a) A-which is true of a state S, if s has at least n different 
a-successors satisfying A. (Appealing to the tautology (a),, A ++ 
(a; A?),, 1, we shall focus on the case (a), 1.) Consequently, the negation 
of (a), 1, denoted by [aIn 0, is satisfied in S, if s has less than n 
a-successors. In the case n = w, denoting (a), 1 = ,,r Va, we get a control 
over the finite/infinite non-determinism of a, through lVa/Va. Instantiat- 
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ing v for a, we reach a single-formula-control over the cardinality of the 
model: Vv, ~VV, [v],,+i 0 guarantee, respectively, that the model is 
infinite, finite, or n-model. We recall the formula diff(c, ... c,) defined in 
Section 1.2. 

For each n, 1~ n < o, we define CPDL On as an extension of CPDL, by 
the syntactic clause “(a), A is a formula,” with semantics as defined 
above, and axiomatics 

(AX.” 1) k 
( 

diff(c,, . . . . c,) A A (a)cj 
/=1 J 

+ (a), 1 

(AXOn 2) k [@l(C, ” ... v c,-,)+ [a],O. 

Theorem 3.1. CPDLO” is complete. 

THEOREM 3.2. CPDLon + {k [v],, 0} is n-complete, and, therefore 
decidable. 

For n = w, we have Va cs Vn ((a),, l), and so we introduce CPDLV as 
a definitional extension of the union of all CPDLon, n <o, adding the 
proper clauses: 

Syntax of CPDLV: Va is a formula. 

(Ax{) Va + (a), I, for each n < w; 

(Rv) If /- [y](a), 1, for all n co, then k [y] Va. 

THEOREM 3.3. CPDL’ is complete. 

Let CPDL”” =pr CPDLV + ( t- ~VV ), and CPDL’“‘=bF CPDL’ + 
{l--V%). Then, &Z 
CPDL’-model. 

is a model for CPDL”“““” iff .4? is a finite (infinite) 

THEOREM 3.4. (a) CPDL”” is complete. 

(b) CPDL’“’ is complete. 

As far as decidability is concerned, we can only say that the formula Vv 
disproves the fmp for CPDLV , whereas, by definition, CPDL”” has the 
fmp, and CPDL’“’ lacks this nice property. 

Questions. Are CPDL On, CPDLV, CPDL”“, CPDL’“’ decidable? 

3.2. The Polish Iteration Quantifier 

We add, over CPDL, the operation Z7 on programs, defined by l7a = 
n "<Cd a”. This equivalence immediately suggests the axiomatization 

(Ax”,) (ZZcr)A --t (a”)A (for all n <w); and 

(Rn) If k [y](a”>A, for all n<w, then /- [y](Z7a)A. 
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As a direct application of the completeness techniques exploited above, 
we immediately obtain: 

THEOREM 3.5. CPDL” is complete. 

3.3. Repeating 

The repeating-cr predicate, Aa, defined by 

s FAa iff 3s,,,s,, . . . (sg=s&Vkk,,(skR.sk+,)) 

has become renowned in this decade among dynamic and modal logicians 
because of its insusceptibility to axiomatic treatment. A hypothesis of 
Streett (1982) suggests that the two axioms 

(Ax;) da-+ (a) Act, 

(Ax;) A A [cr*](A + (cc)A) -+ dcl 

yield a complete axiomatization of A, over PDL. (A recent, still 
unpublished, paper of Sakalauskaite and Valiev (1989) claims to have 
proved Streett’s conjecture.) The combinatory approach makes an advance 
in this conjecture, proving it in a combinatory setting. 

Let CPDLd =bF CPDL + (d} + (Ax:) + (Ax:). We have: 

THEOREM 3.6 (Gargov and Passy, 1988). CPDL3 is complete, decidable, 
and has the fmp. 

Remark 3.7. The proof of this last theorem considerably deviates from 
the other completeness proofs presented thus far: an intermediate step of 
the proof appeals to the inlinitary rule 

(Rd) If t- [r] @ (u) ck+, , for some infinite string of 
names cO, cr, . . . . then t I31 @ & 

which in fact has the shape of a p-rule, and not of an w-one. 
Thus (R,) requires an essential modification of the notion of theory, and 

the proof of the Separation lemma than relies on the Brouwer-Kiinig 
lemma. 

Open Question 3.8. Had we devised some general proof-theoretic 
method to establish conservativeness of a combinatory system over its non- 
combinatory fragment, we would have immediately obtained proof of 
Streett’s conjecture for PDL“. Moreover, such a method would automati- 
cally induce all completeness results on the non-combinatory counterparts 
of the systems we treat. 

Hare1 (1984) suggests an intinitary axiomatization of A over QDL, by 
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the axiom deco (a) Aa, and the o-rule if FA + (a”) 1, for n co, then 
k A + dcr. It is interesting to observe that this rule is a version of (Rn) 
from the previous sub-section, which yields axiomatiation of 17. 

3.4. The Formal Brouwer-Kiinig Lemma 

THEOREM 3.9. CPDL”.‘,’ k Ila + (Aa v (a*) Vu). 

Proof By the completeness theorem for CPDL”.V%d. 1 

4. Two Extensions with Choice Function 

By (uniform) selector on a binary relation, we mean a function which is 
included in the relation and has the same domain. In recursion theory, the 
uniformization theorem (known also as the single-valuedness theorem, or 
the selector theorem) says that for each recursive (resp., Z7:) relation there 
is a recursive (resp., Z7:) selector, cf. (Rogers, 1967; Shoenlield, 1967). 
This elegant theorem plays an important role in studying generalized 
computability. In view of the traditional conceptual impact of theory 
of computability on logics of programs, the selector seems a natural 
innovation in the ambience of PDL. In this section, we apply the com- 
binatory method to axiomatization of the selector on programs. Next, we 
apply the selector to an axiomatic approach to the well-ordering relation. 

4.1. Uniform Selector on Programs: CPDLp 

We define CPDLP as an extension of CPDL c (see Section 2.2) 
adding-for a fresh letter p-the specific clauses: 

Syntax of CPDLP: pa is a program. 

Semantics: 4 = (M, R, x, V, r) is a CPDLP-model, 
if (M, R, x, V) is a CPDL c-model, and 
r: M x (2”\ { a} ) + M is a choice function, 

i.e., r(s, X) E X, for 0 # Xc M; and 

s&r t iff r(s, R,(s)) = t. 

So, we have defined R,, to be a function included in R,, with the same 
domain. 

Axioms for p: (Pl) (a)1 + (Pa)1 

W) paca 

M3/93/2-7 



310 PASSY AND TINCHEV 

We extend the Truth lemma accordingly. In the canonical model J&, we 
define the choice function I( [cl, X) for each 1 cl E M and X, @ # Xc_ M, as 
follows: if 3cr (X= &(/cl), then, by the Truth lemma, there is some d with 
@ (pcr)dE T, and we postulate r(lcl, X)= Id/; if 13~ (X=&(/cl)), then 
we choose r( ICI, X) E X arbitrarily. 

THEOREM 4.1. CPDL” is complete. 

4.2. The Logic of Well-ordering: CPDL G 

For a fresh letter II, we add over CPDLP the new clauses proper for A: 

Syntax of CPDL G : 2 is a program. 

Semantics of CPDL G : a model for CPDL G is any 
CPDLP-model, in which the 
following conditions are met 
(s 6 t denotes sR, t): 

(i) < is an antisymmetric and transitive relation; 

if @#X&M, and 3x3 (X=R,(t)), then 

(ii) X has a least element with respect to d, and 

(iii) r(s, X) chooses the least element of X (for any s). 

Axioms for A: (Al) @(A)dr\ @(A)c+ @d 

(12) @ (i)e A @ (;l)d+ @ (I)d 

(A3) (a)c A (pcr)d+ @ (i)c. 

THEOREM 4.2. CPDL’ is complete. 

5. Polyadic Extensions 

The possible worlds semantics for modal logic is based on the 
accessibility relation R, which can be thought of as a monadic (and multi- 
valued) function saying, for any worlds s and t, whether t is a possible 
development of s. This formalism is a special case of various more general 
approaches utilizing polyadic (many-argument) accessibility functions or, 
moreover, acessibility relations, bounding collections, ordered or not, of 
possible worlds. We shall not undertake here the development of these 
approaches in the nominated environment, but will only make two steps in 
that challenging direction. 

A common stream of both what has been done in previous sections and 
what might be sought in the generalization in question may be layed down 
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in a view expressed by DoSen (1986) who calls modal logic a “general 
theory of unary propositional operators” and asks “Is modal logic able to 
deal with arbitrary unary propositional operators?’ Relating that question 
to combinatory modal logic, in the light of the axiomatizability results for 
universal- and existential- and for arithmetical-operators (Theorems 2.19 
and 111.2.3), the answer tends to be positive. The same author, in the same 
paper, appeals for the creation of a logical theory able to claim the 
honourable title of “general theory of binary propositional connectives.” 
Furthermore, he dreams that this “theory should cover not only two- 
valued, or many-valued, or intuitionistic, or relevant connectives, but any 
connectives we might wish to consider.” 

“Binarity” of a certain operator 8 might be understood as “diadicity,” i.e. 
8 = &A, B), as well as “2-dimensionality, ” i.e., as a request for the evalua- 
tion (of formulae containing 0) to be made in two points of the universe 
simultaneously. (The k-arity has, accordingly, the same meanings.) Regard- 
ing both possibilities, the combinatory approach makes no difference 
between cases k = 2 and k # 2 (cf. Remark 2.2), and so combinatory modal 
logic runs as a plausible candidate for DoSen’s honourable title and a 
materialization of his dream. To illustrate this, we shall give two applica- 
tions of the combinatory method: one treating polyadicity and another 
treating multi-dimensionality. 

5.1. Pairing of the States: CPDL-’ 

We again make the stipulation that CPDL-’ is an extension of CPDL, 
mentioning only the new clauses: 

Syntax of CPDL’. If A, B are formulae, then J(A, B) is a formula. 

Semantics. J# = (M, R, x, V, j) is a CPDL’-model, if (M, R, x, V) is 
a CPDL-model, and j c A4 x A4 x M is a ternary relation (with the intended 
meaning of multi-valued coding function j: M* -+ M). The satisliability 
relation is extended by 

s wu, B) iff 3~ 3u(u FA &v kB& (u, v, s)E~), 

i.e., V(J(A, B)) consists of the j-codes of the pairs from V(A) x V(B). 

To bring the relationj closer to the usual notion of coding functions, one 
may optionally add some of the following constraints: 

1. j is a function (from M2 into M) 

2. j is totally defined, i.e., dom( j) = M2 

3. j is injective, i.e., j(s, t) = j(,, u) implies s = u & t = u 

4. j is surjective, i.e., range (j) = M. 
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Axiomatics. 

(Ax,) @ A A @ B A J(c, d) -+ J(A, B) 

(R,) If k [y] l( @ A A @ B A J(c, d)), for all c, d, 
then k [y] lJ(A, B). 

Having adopted any of constraints 1-4, one should add, respectively, the 
axioms: 

1. @ J(c,d)r\ @J(c,d)+ @e, 

2. OJ(c, d) 

3. J(c, d) A J(c,, d,) -+ @ cl A @ d, 

4. J(1, 1). 

For the Truth lemma, we add 

@ J(A, B)ET iff 3d3e(@Ar\ @BA @ J(d,e)ET). 

In the canonical model, we define 

(x(c), x(d), x(e)) Ej iff @ 

THEOREM 5.1. CPDLJ is complete. 

We shall not discuss the left and right 
I( j(s, t)) = s and r( j(,, t)) = t, whose axiomatic t 
is also a routine matter. 

5.2. Many-Dimensional Dynamic Logic 

J(c, d) E T. 

decoding functions for j: 
t-eatment in this framework 

Segerberg (1973) considers “two-dimensional” modal logic as a natural 
tool for the investigation of several instances of “two-dimensional” 
modalities, namely modal operators requiring evaluation in pairs of states. 
A motivation for doing so comes from temporal logic, from properties pos- 
sessible by pairs of moments of time. For example, if (s, t) is the period of 
time locked between moments of time s and t, a sample two-dimensional 
property P would be 

P(s, t) if (s, t) is shorter than (s,,, to), for some fixed sO, to. 

Paying debts to the computational background of the whole enterprise, 
one might call the argument (adduced by Hare1 (1983) in motivating 
dominoes) that 2-dimensional modal logic “can be regarded as an 
appealing abstraction capturing the two-dimensional time/space character 
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of computation, but one which is devoid of the details of particular 
computing machines.” Of course, some other magical properties of the 
holy number 2 might be spelled as well. 

Segerberg’s paper gives a formal approach to two-dimensional 
phenomena, proving completeness and decidability. The completeness 
proof is rather intricate and the author concludes the paper with an appeal 
for a much shorter proof. This question was later put by D. Vakarelov in 
a more general setting: to find an axiomatization for the n-dimensional case 
(Segerberg’s method already fails for n = 3, cf. (Vakarelov, 1985-1988), and, 
moreover, to do this over PDL, where n-argument programs prove quite 
natural objects. We shall outline the solution of A. Petkov (A. Petkov, 
1987) axiomatizing the n-dimensional PDL (for each fixed n < o) in the 
typical combinatory spirit. Up to notation and minor simplifications, the 
rest of this section is a sketch of this solution; we exemplify the method 
for n = 2, which case makes no difference from any other Cartesian degree 
n<o. 

Square CPDL, SqCPDL, will be the system dealing with the 
2-dimensional case. 

The syntax of SqCPDL is defined as an extension of the basic CPDL 
language with two new modalities (programs) (x ) and ( y ) (say x, 
y E n,), and one new propositional constant E (say E E QO). 

Semantics of SqCPDL. A square model is any quintuple &I!! = 
(M, U, R, x, V) such that (M, R, x, V) is a CPDL model, and 

M= u2; 

E is interpreted as the diagonal of M, i.e., V(E) = {(s, S)/.SE U}; x, y are 
interpreted as decoding functions in the sense that R,((s, r)) = (s, s) and 
R,((s, t))= (t, t), for each s, t E U. 

The Square Axioms, where z runs over {x, y}, are: 

(Al.l) (Z)C -+ [Z]C 

(A1.2) (z)E 

(A2) @EA @E+O((x)cr\ (y)d) 

(A3) @(We, A <~)ez) A @(We, A (y)ez)-r 0 d 

(A4) c A E-+ (z)c 

(A5) (x)d A (y)d+ E. 

THEOREM 5.2 [Petkov, 19871. SqCPDL is complete. 



314 PASSY AND TINCHEV 

The Square CPDL and its intersected version, SqCPDL ,̂ turn out to 
provide a suitable environment for a good deal of specific two-dimensional 
operators. For example, the following are uniformly axiomatizable (where 
R(u, u) is R((u, u))): 

R,(u, Z’)’ ((0, 4) 

R,(u, u) = { (4 WI/WE U) 

R,(u, 0) = {(w, u)/w E U) 

Mu, 0) = ((u, WI/WE u> 

Mu, u) = ((w u)/w E U>. 

Note. The modalities [R,], [R,], [R3], as well as [x], [y], [v], are 
taken as a necessary part of the ground language in Segerberg’s approach. 

Left open is the question of a general theorem, in the spirit of 
Theorems 2.19, describing some nice (possibly the whole) class of 
axiomatizable diadic relations over the Square models. 

6. Undecidability and Finitary Incompleteness 

The inlinitary inference rules, as opposed to r.e. axiomatics, guarantee as 
low as f7:-completeness, rather than Zy, for an upper bound on the hard- 
ness of provability problem. 

DEFINITION 6.1. For an axiomatic system 8, we say that 8 is uery hard, 
if deciding provability in d is Z7:-complete. On the semantical side, we say 
that &’ is highly undecidable, if the deciding satisliability in d is 
C f-complete. 

Provided d is Kripke-complete, 8 is very hard iff 8’ is highly 
undecidable. We shall apply Harel’s (1983) domino-method to some of the 
systems from this chapter to show them highly undecidable, whence very 
hard. In fact, we shall refer to the high undecidability of the PDL-based 
counterparts, which negative result-being automatically induced on exten- 
sions-will apply to the combinatory extensions of those systems. Another 
inheritable negative property is the lack of fmp, and first we state this for 
several combinatory cases. 

Take, cf. Section 2.1, cycle(u) =uF (a*)(a + n I ) 1, and, cf. (Harel, 
1984), 

A, =DF [a*](a) 1 +cycle(a), 
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which formula is obviously true in each finite PDL  ̂ (or CPDL”) model 
and which obviously fails in (each point of) the infinite model J&= 
(N, R, V), where N= (0, 1,2 ,... }, R,= {(k,k+ l)/k~N}, I’ is arbitrary. 
So the formula A,, i.e., the presence of the pair “ n , *” in the language, 
excludes the fmp. Hence, the pair “1, *” would do as much. So would do 
the pairs “ E , *” and “ = , *“, as could be seen from the same model Jll,, 
and, respectively, the formulae 

A, =DF [a*](a)1 -+ (a*)(zCu+), and 

A= =DF [a*](u) 1 -+ (u*)(u+ =a*). 

Summarizing these, and the observations from Section 3.1, we can 
formulate 

THEOREM 6.2. CPDL#, where # E { n, 1, Z, =, p, <, V, inf}, lucks 
the fmp. 

In the next theorem (and later, in the next Chapter) we shall refer to a 
result of Hare1 and Vardi, precisely to its domino setting, see (Harel, 1983, 
Theorem 4.9) stating the high undecidability of Deterministic PDL .̂ To 
establish this, determinism is exploited only to the extent it guarantees the 
existence of two deterministic program variables a and b, and intersection 
is needed to guarantee that composition somewhat commutes over these a 
and b: (ub n bu) 1. Since languages with 0, are able to guarantee deter- 
minism: q (1 (a)* 1 A 1 (b)* l), and, by definition, pa and pb are deter- 
ministic, we have, as a direct corollary to (Hare1 1983, Theorem 4.9), the 
following: 

THEOREM 6.3. CDPDL”, CSDPDL”, CPDLo2-“, CPDLp.“, CPDL<-” 
are highly undecidable, hence very hard. 

As an application of the domino method we also have the next two 
theorems, the third being an immediate consequence of them. 

THEOREM 6.4 [Gargov, 198419861. PDL’+-’ is highly undecidable 
(here u - ’ is the converse of a single atomic program). 

THEOREM 6.5. [Gargov, 198419861. PDL^‘” is highly undecidable 
(here 11 is the complement of the identity program I). 

THEOREM 6.6. CPDL’+-‘, CPDL”-‘, CPDL^,“, CPDL’ are 
highly undecidable, hence very hard. 
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We mentioned here some “negative” decidability results which, in addi- 
tion to the “positive” ones obtained above (decidability of CPDL, 
CPDL’“‘, CPDL’” + {t q , 03, CPDLd, and fmp for those and CPDL”“) 
exhaust our present knowledge on that matter. To round up the discussion, 
we shall raise some questions that remained open. 

Questions 6.7. a. Fmp for CPDL- I, CPDL ‘YA, for k > 2, CPDLm, 
CPDL.‘, SqCPDL. 

b. Decidability for CPDL”, CPDL-‘, CPDL c, CPDL =, CPDL” k, 
CPDL”, CPDL”“, CPDLinf, CPDL”, CPDLP, CPDL <, CPDLJ, 
SqCPDL. We should stress on the intersection, CPDL ,̂ which, in the light 
of the decidability of PDL ,̂ cf. (Danecki, 1985), we expect to be decidable. 
However, we are not aware of a general method reducing the decidability 
of a nominated modal system to decidability of the non-combinatory coun- 
terpart. 

c. Completeness and decidability of the F- and Y*-, cf. 1.7.10, ver- 
sions of the systems from this chapter. Again starring are the intersection 
“Is Y*CPDL” complete?” and determinism, “Are 9CDPDL + (DET) 
and p*CDPDL complete and decidable?” 

Neglecting the p-rule (Rd) from Remark 3.7, the remaining of the long 
rules are o-ones, and depending on the “type of infinity” they induce, are 
either (Cov)-like, with quantifier VcCEZ, or (Ind)-like, with quantifier 
vnncw. In most cases, the (Cov)-type infinity proves to be a quasi-infinity. 
As it was mentioned in 1.3.9, for a symmetric system d (and all considered 
thus far, save CPDL”‘, are such) we have it that d = *&, i.e., 

PROWSITION 6.8. Provided d is symmetric, d is complete iff *d is 
complete. 

The attempts to finitize (Ind)-type infinity, however, would in many 
cases fail. Extending convention 1.7.10, we make the following 

Convention 6.9. Given a system d with an w-rule 

(R) If t--A(n), for all n<o, then FB, 

by 9-d we shall denote any version of d, in which each such (R) is 
replaced by some linitary (admissible) rule, or by an r.e. set of axioms 
(provable in a). 

Now, s*d will no more have o-rules, and will have an r.e. set of 
theorems (all being provable in I, i.e., p*d cd = *&?). Hence, if d is very 
hard, then S*b 5 b, and thus completeness of d implies incompleteness of 
F*d. Therefore we have: 
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INCOMPLETENESS THEOREM 6.10. If d is any of the systems mentioned by 
Theorems 6.3 and 6.6, then 8*& is incomplete (i.e., 9*& does not prove all 
tautologies). 

Regarding each of these incomplete finitary systems F*d, there are two, 
somewhat conceptual open problems: 

Problems 6.11. .) to find a formula A such that d t A & F*d tf A 
(such formulae obviously exist) 

. ) to find (or to disprove the existence of) a class of models ZZ? such 
that F*d is complete with respect to d. 

An instruction to these problems might possibly be found in Wands and 
Clarke’s examples of formulae whose proofs require o-rules, cf. Goldblatt’s 
expose on the matter (Goldblatt, 1982, 1.6, 1.10, 3.10, and p. 191). 

.) to find some clearer description of the systems in which the (Cov)- 
type rules are redundant; see Theorem 1.7.8. 

Chapter III: Quantification in Comhinatory PDL: CDL 

The novice may wonder why quantified modal logic (QML) is con- 
sidered difficult. QML would seem to be easy: simply add the principles 
of first-order logic to propositional modal logic. Unfortunately, this 
choice does not correspond to an intuitively satisfying semantics. From 
the semantical point of view, we are confronted with a number of deci- 
sions concerning the quantifiers, and these in turn prompt new questions 
about the semantics of identity, terms and predicates. Since most of the 
choices can be made independently, the number of interesting quantified 
modal logics seems bewilderingly large. 

This is the beginning of Garson’s chapter (Garson, 1984) of the “Hand- 
book of Philosophical Logic,” later in which p. 269, Garson writes: 

Completeness proofs in QML are quite a bit harder than the complete- 
ness proofs for propositional modal logic or first order logic. One reason 
that proofs are diffkult is that sometimes there are none to find.... Even 
when a system is complete, the proof may be elusive, and difftcult to for- 
mulate in a simple way. Another problem is lack of generality: a proof 
strategy may only work when the underlying modal logic is fairly strong, 
or when ad hoc conditions are placed on the models. 

One of the best ways to understand the methods used in completeness 
proofs for QML is to locate the main difficulty which arises if we simply 
try to ‘paste together’ proofs for quantiticational logic and propositional 
modal logic. 
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To add to this sketch of modal predicate troubles, we shall also quote 
van Benthem’s Chapter [Benthem, 1984, Sect. 2.51 of the same Handbook: 

Modal predicate logic, however important in philosophical applica- 
tions, is much less understood.... The unfinished state of the art shows 
already in the fact that no commonly accepted notion of semantic struc- 
ture, or truth definition exists.... On the whole, exciting technical results 
are yet scarce in modal predicate logic. 

These quotations (and we can add many more) witness to the disastrous 
situation of modal predicate logic from its pre-combinatory period. The dif- 
ficulties (most of, if not all) in quantified modal logic seem to be caused by 
the two different sorts of quantification: one modal [RI, and one classical 
Vx or VP. For, in search of completeness, the main concern becomes, cf. 
(Garson, 1984, Sect. 2.1.3), to co-ordinate the conditions of the Truth 
lemma, demanded by the two quantifiers. 

These problems are to be skirted, if classical quantification is introduced 
to match modal one. Since the latter is over possible worlds, s /= [R]A iff 
V’t(sRt + t +A), we should be obliged to classically quantify over the 
worlds as well. Having the names at hand, we shall have no problems in 
doing so: we add the syntactical clause “VcA is a formula” with the most, 
if not the only, natural semantics and axiomatics. 

The troubles are now overcome. The logic obtained is easy: easy to 
understand and easy to deal with. An exciting completeness result is 
obtained. And the novice will have one less point to wonder about. 

Technically this chapter might be considered as a part of the previous 
one (the notational and the like conventions being still valid), and we 
artificially separate the quantified study only because of the complications 
arising in the non-combinatory case. 

The idea to introduce quantifiers in combinatory language came from 
Skordev’s paper (Skordev, 1984), which suggests quantification (in a rather 
computational system) over objects similar to what we denote by 2. 

1. Definition and Completeness 

Extending the definition of CPDL, we set: 

Syntax of CDL: 3cA is a formula, and VcA =DF 13~ 1 A. 

By (;} A we shall denote the substitution of c instead of d in A, assuming 
c to be substitutable for d in A, cf. (Shoenfield, 1967). The notion of free 
occurrence of a name in a formula or program is the usual one. 

Semantics of CDL: s b 3cA iff s + { f} A, for some d 6 C. 
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Axiomatics of CDL: We discard (Cov) and add to CPDL’s 
axiomatics: 

(cov) 3cc 
(V-ax) VcA + (:)A 

(bare) Vc[a] A + [a] VcA, if c has no free occurrence in 
a (Barcan formula ), 

and the rule 

(Gen) If t A, then t-- Vc.4. 

Query. Is the Barcan formula derivable? (Bull (1970) and Prior (1967) 
note that it is, when [a] is S5, or when [a-‘] exists in the language.) 

LEMMA 1.1. The rule (Cov) is admissible. 

Proof: Let 1 [r] i c, for all c E C. Let coTy. 

t [y] Vc lc, by (Gen) and (bare) 

k [y] Vcc, by (cov) and (Net) 

t [r]O, by the last two. 1 

LEMMA 1.2. The following “special” rule is admissible: 

(SR) g [y](t)A, for each dgC, then f-- [y] VcA. 

Proof By (Gen) and (bare). 1 

DEFINITION 1.3. A logic over CDL is any set of CDL formulae, 
containing all axioms and closed under (Ind), (MP), (Net), and (Gen). 
Given a logic L, an L-theory over CDL is a set containing L and closed 
under (Ind), (MP), and (SR). 

Note that (SR)-closedness of theories guarantees (Cov)-closedness as 
well. 

TRUTH LEMMA 1.4. We extend the Truth lemma 1.5.1 with the foIlowing 
clause: 

@ VdA E T ifs @ {:}AE T,foralleEE. 

ProojI By (SR)-closedness of T and (V-ax). 1 
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The familiar canonical technique gives: 

THEOREM 1.5. CDL is complete. 

2. Arithmetical Operators: Axiomatization through Expressiveness 

The domain of the translation - (cf. 1.1.8) can be uniformly extended 
from open to all PC formulae; thus obtained will be an injective imbedding 
-: PC H CDL. We can extend the Expressiveness theorem 1.9 to the 
following 

EXPRESSIVENESS THEOREM 2.1. For each PC formula F, F- expresses F. 

Proof Straightforward induction on the construction of F, 1 

Questions 2.2. .) How to extend PC to equalize its expressive power 
with CDL? (Such an extension should contain a sort of transitive-closure- 
operator, cf. the remarks preceding Problem 1.1.13.) 

.) Describe the set {AECDL/A expresses some PC formula}. 

Let us fix, cf. Remark 11.2.2, an arbitrary PC formula F(c, d) of two free 
variables and extend CDL with the operator 0 = O,(a), adding the clauses: 

Syntax of CDL”: O(a) is a program. 

Semantics: x(c) &x(d) iff JZ It- F(c, d). 

THEOREM 2.3. Let A(c, d) express F(c, d). Then 

(Ax,) @ (@a))d++A(c, d) 

completely axiomatizes CDL’. 

Proof: We mechanically extend the completeness proof for CDL with 
the details listed in the proof of Theorem 11.2.3. i 

As a corollary to Theorems 2.1 and 2.3, we obtain 

THEOREM 2.4. Let F(c, d) be an arbitrary PC formula, and 0 = 8,. Then 

(Ax01 @ (@(a)>d- F’(c, d) 

completely axiomatizes CDL’. 

Problems 2.5. It is important for the last proof that F be expressible, 
not that F be from PC. So, having once answered Question 2.2, one 
immediately gets a generalization of Theorem 2.4 covering each F from the 
superstructure of PC sought expressible in CDL. An accomplishment of 
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Theorem 2.4 would require an explicit description of all operators, 
axiomatizable over CDL by a finite set of axioms. Also open is the question 
of what a breakthrough in the analytical hierarchy the combinatory 
axiomatic potential can make. For we have one example with the repeating 
A, whose axiomatization makes hints to introducing longer or quasi-longer 
rules, and the harder operators might possibly require giving names to the 
subsets of the universe: such an idea might envelope Bull’s (1970) history- 
propositional variables in tense logic, and Radev’s (1986) path constants in 
process logic, both nominating strings of states. 

We should note that process logics offer expressiveness (or descriptive 
completeness) results similar to that of Theorem 2.1; see (Nishimura, 1980) 
and references therein. 

3. Undecidability and Finitary Incompleteness 

Since (F-/FE PC} is a decidable subset of CDL formulas, and IF F iff 
PC k F, we have the PC-provability problem reducible to the CDL- 
provability problem, and in virtue of the Zy-completeness of the former, 
one has: 

PROPOSITION 3.1. Deciding provability in CDL is at least C’;‘-complete. 

On the semantical side, one has 

PROPOSITION 3.2. The language of CDL lacks the fmp. 

Prooj The formula q (a) 1 A Vc @ [a; a*] lc has only infinite 
models. 1 

We shall strengthen these results. As we mentioned in Section 11.6, 
the essence of the high undecidability of Deterministic PDL  ̂ is in the 
guaranteed interpretation of two programs a, b as deterministic, and in the 
existence of a formula (with the semantics of) (ab n ba) 1. In CDL’s 
language, we have that 

det(a) =bF fT Vc((a)c+ [a]c), and likewise Wb), 

guarantee determinism of a and b, and that 

3c((ab)c A (ba)c) has the meaning of (ab n ba) 1. 

So, again as a corollary to (Harel, 1983, Theorem 4.9), we have 

THEOREM 3.3. CDL is highly undecidable. 
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Hence we can extend the incompleteness results from X6.10 with 

INCOMPLETENESS THEOREM 3.4. 9CDL is not complete. 

By the arguments of Proposition 3.1, and the recursive enumerability of 
YCDL theorems, we have 

THEOREM 3.5. Deciding provability in .F CDL is Cy-complete. 

As a by-product of the method, we obtain for the “pure,” *-free 
Quantified Combinatory poly-modal logic, CpML: 

THEOREM 3.6. CpML is Kripke complete and Cy-complete. 

The incompleteness again raises problems (see the instruction to 11.6.11): 

Problems 3.7. .) find a formula A such that 9CDL t+ A & CDL k A. 

. ) find (or disprove the existence of) semantics w.r.t. which SCDL 
is complete. 

Discussion on the State of the Art, Its Perspectives and Genesis 

The truly-Henkin combinatory completeness proof, unlike the traditional 
quasi-Henkin proofs of modal completeness, provides a very flexible coun- 
ter-model fitting for a wide family of extensions (and proceeds without 
making a detour through non-standard models or pseudomodels). The 
basic language succeeds to impose on the counter-model all the conditions 
demanded by the semantics of the various operations that we mercilessly 
added to the syntax. And not surprisingly: “In some sense this logic con- 
tains its own metatheory,” cf. (Radev, 1987). The completeness proof as if 
emerges from the coherence between the combinatory syntax and models. 
Proper names provide a rich syntactic matter out of which the counter- 
model grows, exactly as the variable-free terms serve in the predicate 
calculus, cf. (Shoenfield, 1967 ). 

Moreover, the rule (Cov), respectively the predicate axiom (cov), allots 
to the names the role of special Henkin constants, making them witnesses 
to the modal existence (v). For the Truth lemma 1.5.1 (4) guarantees that 
for each formula A = (a) B, there is a name cA with T /-A -+ 
(a)(c, A B), which precisely responds to the generic condition for the 
special Henkin constant cA for the formula A = 3xB(x): t A + B(cA). 

Similarly, in the quantified case, the axiom (cov) makes the names wit- 
nesses also to classical existence 3. So, no obstacles exist to mechanically 
“pasting together” the Henkin proof for predicate calculus and the Henkin 
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proof for the Combinatory PDL into a smooth completeness proof for 
CDL. 

The charm of CDL might be put in more ceremonial words, saying that 
CDL is a free logic in the sense of Hintikka, see, e.g., (Garson, 1984). This 
means that the existential quantifier 3 refers only to objects whose existence 
is guaranteed (namely by the axiom (v ) c). Hence, the choice of CDL as 
a predicate model system accords with Garson’s “Conclusion: We Should 
Adopt Free Logic.” 

As far as the o-rule (Ind) is concerned, we can not but accept 
Goldblatt’s (1982, p. 24) contention that “reasoning about while-commands 
is naturally encapsulated in an inlinitary rule, and so such rules are to be 
used in a system that is designed to formally represent such reasoning.” In 
fact, (Ind) makes the natural numbers witnesses to the implicit quantifier 
3n realized by the iteration . *. the Truth lemma says that, for a formula 
A = (a*) B, there is a natural number k with T t-A + (ak) B. 

As shown by Proposition 11.6.8, the (Cov)-type infinity is, as a rule, a 
quasi-infinity, and thus is of the two w-evils the lesser. The Incompleteness 
theorems 11.6.10 and 111.3.4, on the other hand, show for many systems that 
finitary axiomatization, hence (1nd)‘s tinitization, is impossible, whence 
(Ind) remains the carrier of actual infinity. This rule is a means justified by 
the end: uniform axiomatization of the variety of dynamic modal 
systems-from easily decidable to highly undecidable. 

The high undecidability of the combinatory systems, in turn, is a projec- 
tion of the high undecidability of a certain non-combinatory counterpart, 
cf. Theorems 11.6.3, 11.6.6, 1X3.3. So the very hardness is properly due not 
to the combinatory innovations, but rather to the state of affairs, which 
state is only accurately depicted, and not caused, by the combinatory 
approach which we professed in this paper. 

For future research, directions were outlined in 1.1, 1.1.13, 11.2.4, 11.2.8, 
11.2.20, 11.3.8, 11.5, 11.6.7, 11.6.11, 111.2.2, 111.2.5 and 111.3.7. Well-motivated, 
as a possible alternative of the o-rules, are versions of the combinatory 
language admitting intinitary conjunctions and disjunctions. Progress in 
that direction has been made by Radev (Radev, 1985, 1987), and future 
research should possibly be linked with axiomatization through (C, A, 
CA)-epressiveness, cf. 11.2.20. 

Another perspective is the nominated process logic, and here also a 
pioneering work exists by Radev (1986). Let us mention also temporal, 
tense, intuitionistic, and epistemic logics; from the latter we shall dis- 
tinguish some knowledge representation systems, cf. (Halpern, 1986), in 
which Kripke semantics and S5 are so fashionable today. On the whole, 
the combinatory idea suggests a revision, though a slight one, of the 
fundamentals of Kripke modal logic, and therefore benefits should be 
expected in all areas which Kripke semantics has to do with. 
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A good idea should enjoy a respectable history. Our names have it. We 
traced this history back to the mid-fifties, when they were probably 
conceived. 

Prior (1956) launches the idea of variables ranging over individual 
moments of time, and Bull (1968) proves this system complete. Reportedly, 
cf. Humberstone (1987b), Prior and Meredith (1965) and Prior and Fine 
(1977) consider objects similar to what we call names. 

Fine (1970) axiomatizes Boolean atoms via propositional quantifiers over 
S5; he reports on a similar result of David Kaplan. Later, Fine (1975) 
introduces the so-called normal forms to serve as state-descriptions, and 
provides elegant completeness proofs. 

Gabbay (1976) mentions proper names in a temporal context. Garson 
(1980) quantifies over individual concepts ( = functions from possible worlds 
to possible worlds). Gabbay ( 1981) suggests a syntactical modal charac- 
terization of irreflexive accessibility relation R,, by the rule 

“If t Cvl(Cal P + PL then k [r]O,” 

where [y] is an admissible form, cf. Comment 1.3.5.D. He writes: “This rule 
simply allows us to carry out a semantic tableaux construction for the 
logic, allowing us to build models with the property that in each possible 
world there is an atom {i.e., variable} true exactly in that world.” 

The normal forms of (Fine, 1975) were rediscovered a decate later by 
Fagin and Vardi (1985), for proving completeness w.r.t. the internal modal 
semantics-an approach also closely related to the names, cf. (Tehlikeli, 
1985). 

Tiomkin and Makowksi (1985) introduce local assignments over 
PDL-a semantical notion close to the names but less expressive, cf. 
(Tinchev, 1988). A similar unique-world modality, also a purely semantical 
creature, appears in (Koymans, 1988). 

An axiomatic approach to dynamic logic close to the combinatory spirit 
is that of Goldblatt (1982, 1987). He clearly declares that “data have to be 
nameable in programming language” (1982, p. 11 1 ), and that “inlinitary 
rule cannot be replaced...” (1982, p. 170). These views lead the author to a 
truly-Henkin completeness proof of a quantificational dynamic logic 
(1987), and to a version of Scott’s isomorphism theorem (1982, p. 1974, 
Corollary 3.7.3). In contrast with our approach, Goldblatt adjoins to the 
language some external set of technical witnesses, in order to obtain rich 
theories, namely theories closed under a rule similar to what we call (SR) 
in Chapter III. The external witnesses, as compared to the proper names, 
have both advantages and drawbacks in both technical and conceptual 
respects, and we leave deeper comparisons to the future. 

A paper presently belonging rather to the future than to the history of 
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the subject is that of Blackburn (1989a) (and Blackburn, 1989b), referred 
to therein), who rediscovers names in the context of tense logic. We were 
happy to learn that this author had survived the same diappointment as we 
ourselves had; he writes: “When I began the work reported here I believed 
the idea of’using nominals to be a novel one.” 

A paper, however, evidently holding priority over introducing names in 
their cleanest form is that of Bull (Bull, 1970) where names, under the 
name of clock-propositional variables, appear in the context of a quantifica- 
tional tense logic with a universe-modality, the quantification being namely 
over them. (Bull refers to Arthur Prior (1967) and Bull (1989) notes “The 
idea was Arthur’s in the first place.“) Though independent (we saw Bull’s 
and Prior’s works in the summer of 1989), the present study might be 
considered as an advance of Prior and Bulls idea. 

By happenstance, Kripke modal theory missed the chance of being ab 
initio created as a combinatory one: the idea of names can be uncovered as 
a divide between the two historical modal roots-(Kripke, 1959) and 
(Kripke, 1963). In the latter Kripke writes: 

Every atomic formula {i.e., propositional variable} P is assigned a 
truth-value in each world H; in fact, this truth-value is (s(P, H). Here we 
already have a slight divergence from the treatment in [1959]. For in 
[1959], we did not have an auxiliary function #J to assign truth-value to 
P in the world H; instead H itself was a “complete assignment,” that is. 
a fincrion assigning a truth-value to every atomic subformula of a for- 
mula A. On this definition, “worlds” and complete assignments are iden- 
tified; so distinct worlds give distinct complete assignments. This last 
clause means that there can be no two worlds in which the same truth- 
value is assigned to each atomic formula. Now this assumption turns out 
to be convenient perhaps for S5, but it is rather inconvenient when we 
treat normal MPC’s in general. In the present paper we drop it. 

A feature distinctive for the Combinatory approach is that, bringing the 
modal language closer to the meta-language, an equilibrium is kept 
between the three pillars of abstractness: language-with names and 
universe-modality, semantics-with possible worlds and universe, and 
axiomatics-with axioms fixing what is possible and necessary to be fixed. 

APPENDIX: Stone Representation Theorem for Comhinatory 
Dynamic Algebras 

DEFINITION 7.1. The tuple D = ((B, 8, 0, A , -I ), (P, v, ;, u , *), [ 1, 
?) is called a Combinatory Dynamic Algebra, CDA, if 

0) (4 0, A , -I ) is a Boolean algebra, and 

(ii) ~EB,vEP, [ ]:PxB + B, ?: B + P satisfy the following condi- 

M3!93/?-8 
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tions (where A,BEB, a, /I, YEP, CEG?, ( )=br l[ 11, El =bF [v], 
pTJ =DF [v;c?], @ =DF 1n 1): 

[a](A A B)= [a]A A [a]B 

Ell=l 

C@UPIA = CalA A CPIA 

C@$lA = CalCPlA 
[A?]B=A -+B 

rnA<A,ElA<ElL3A,A<EiOA 

q A 6 [a]A 

@A=OA 

/j CYI CanI A = CYI Ca*lA 
ncrw 

,?, [Yl 1c= [?I@ 

Let V&L be some family of CDA’s. We define the Cartesian product 
Z7Dk in the standard way and prove it to be a CDA as well. Following 
(Pratt, 1979), we say that D is separable, if CI #/I implies 3A 
((~1) A # @)A). (Note that D is separable iff a # b implies 3c 
((a)~# (/?)c).) We say that D is a set-CDA, if for some set X it is the 
case that B = 2x, &’ = { (s}/s E X}, P = 2x” “, v = X2, and the remaining are 
the usual dynamic operations. 

STONE REPRESENTATION THEOREM 7.2. Let D be a countable, separable 
CDA. Then there is a family (Dk} of set-CDAs and an isomorphism 
h: D+170k. 

Proof: Cf. (Tinchev, 1986). 1 

Note. In the non-combinatory version of this theorem, see (Vakarelov, 
1983), D is required to be, besides separable, also free in the class of all 
separable DA’s. 

If we extend the definition of CDA by a complement operation 1 in P 
and the equality (-rcr)c = [a] lc, the Stone theorem will still hold. 

This appears to solve the problem raised by Pratt (1979) for creating a 
notion of “complemented dynamic algebra.” It might be tempting, 
moreover, to create a notion of Quantified CDA, in the spirit of Chap- 
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ter III, and prove a Representation theorem, thus trying to challenge van 
Benthem’s (1984, p. 217) statement that “elegant algebraization stops at the 
gates of predicate logic.” 

BIBLIOGRAPHICAL APPENDIX 

To the titles and names hitherto mentioned, we should add at least a few 
more, concerning some of the particular topics. 

For the intersection of programs: Harel, Pnueli, and Vardi, cf. (Harel, 
1984), Hare1 and Vardi, cf. (Harel, 1983), Farifias de1 Cerro and Orlowska 
(1985), Humberstone (1985), Gargov (1986) Gargov and Passy (1990), 
and Vakareiov (19851988). 

For the complement of programs: Hare1 (1984), who is also a source for 
converse, cycle, repeat, the iteration quantifier, and other things. 

For the universe-modality: Goranko and Passy (1990). 
For the bounded non-determinism: Mirkowska (1981) and Mirkowska 

and Salwicki (1987). 
For the iteration quantifier: Salwicki (1970), Mirkowska (1981), 

Goldblatt (1982), Hare1 (1984), and Mirkowska SC Salwicki (1987). 
For the o-rule in PDL: Goldblatt (1982, 1987), Hare1 (1984), and 

Tinchev and Vakarelov (1986); and for the w-rules in classical logic we 
refer to Rasiowa and Sikorski (1963) and Sundholm (1978). 

The idea of possible worlds semantics for modal logic, today known 
as Kripke and/or Hintikka semantics, is also attributed to mid-forties 
papers of Carnap, and, if the will is there, may be found even in scripts of 
Leibniz, see (Mates, 1968). Starting a decade after Carnap, pioneering 
in the development of the idea were A. Bayart, E. Beth, M. Guillaume, 
J. Hintikka, R. Montague, S. Kanger, S. Kripke, A. Prior, until it 
crystalyzed in (Kripke, 1963). (For more detailed historical references we 
point to Fagin and Vardi (1985) and Hintikka (1984).) There are even 
debates on priority over this celebrated approach, and naming it after 
Kripke we follow the tradition obeyed also by the other pioneers, cf. 
Hintikka (1984). 

When speaking of history of and priority in modal logic two more 
references should not be omitted. One is that of Bull and Segerberg (1984), 
which is an invaluable document for the development of the art. The other 
one is qualified in the latter: “A particularly interesting paper with implica- 
tions for modal logic is Jonsson and Tarski (195 1). If it had been widely 
read when it was published, the history of modal logic might have looked 
different.” The history of modal logic has lost this chance (as well as many 
others), but this might serve as an instructive example for the future of the 
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art, which might look different, if the present paper is not widely read when 
published. 

This sketch of references is by no means complete, let alone detailed. 
However, as a full list would, we fear, utterly exhaust both the authors 
and-a mOre immediate concern to them-the patient reader, we will here 
bring this to its final point. 
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